<sup>3</sup>Food Processing By-product Program Permit Application and Plan of Operation



DEPARTMENT OF ENVIRONMENTAL RESOURCES

3800 Cornucopia Way, Suite C Modesto, CA 95358-9492 Phone: 209.525.6700 Fax: 209.525.6774

#### PERMIT APPLICATION

#### FOR PERMIT TO USE FOOD PROCESSING BY-PRODUCTS REF: STANISLAUS COUNTY CODE, TITLE 9, CHAPTER 9.88

Please complete all applicable questions. (IF ADDITIONAL SPACE IS NEEDED TO COMPLETE ANSWERS, USE THE SPACE PROVIDED ON PAGE 2). A PLAN OF OPERATION MUST ACCOMPANY THIS APPLICATION.

- 1. Address of site(s) See Page 2
- 2. Name of applicant(s) ConAgra Foods Phone (209) 847-0321
- Home and business address <u>554 S. Yosemite Ave, Oakdale, CA 95361</u>
- Mailing address (if different than above)\_\_\_\_\_
- 5. Trade and/or firm name(s) ConAgra Foods
- 6. If the applicant is not an individual, the name and address of the applicant's agent who is authorized to receive notice of actions pertaining to the proposal:

ConAgra Foods Oakdale Contact: Jeff Schultz - 554 S. Yosemite Ave, Oakdale, CA, 95361

Application Area Landowner and Operator: John Brichetto and partners – PO Box 11600, Oakdale, CA 95361

If the applicant is in one of the following categories, additional information must be submitted with the application for that category:

- A. If the applicant is a **State or local government agency**, a copy of the authorization under which the proposal is made.
- B. If the applicant is a **public corporation**, the statute or other authority under which it was organized.
- C. If the applicant is a **Federal government agency**, the title of the agency official delegated the authority to file the proposal.
- D. If the applicant is a **private corporation**, evidence of incorporation and its current good standing.
- E. If the applicant **does not own the premises** where the permit operations will occur, the applicant must provide a notarized letter from the owner that states that applicant has the owner's consent to conduct the proposed project on that parcel, that the owner has approved the proposed Plan of Operation, and that the landowner acknowledges that the landowner could be held responsible for clean-up and abatement of any condition resulting from the permitted operations.

I UNDERSTAND AND AGREE TO COMPLY WITH ALL PROVISIONS OF THE STANISLAUS COUNTY CODE, TITLE 9, CHAPTER 9.88. FURTHERMORE I HAVE THE ABILITY TO COMPLY WITH ALL LAWS REGULATING BUSINESSES IN THE STATE OF CALIFORNIA FOR THE TERM OF THE PERMIT. I CERTIFY UNDER PENALTY OF PERJURY THAT ALL INFORMATION, STATEMENTS AND REPRESENTATIONS SET FORTH IN THE APPLICATION ARE TRUE AND CORRECT.

| Ellam                     |   |
|---------------------------|---|
| SIGNATURE<br>Mant Manutin | · |
| Plant Manut, En.          |   |
| TITLE                     |   |
| 6-16-09                   |   |
| DATE                      |   |
|                           |   |

SIGNATURE

TITLE

DATE

#### Additional Information:

The APNs and addresses for the generator of food processing by-products as a soil amendment are as follows:

063-024-002, 063-024-008, 063-024-009, and 063-024-020 554 S. Yosemite Ave, Oakdale, CA 95361.

The APNs and addresses for the land application sites are as follows:

064-032-006 - S Yosemite Ave, Oakdale

002-059-004 – 26 Mile Road, Valley Home

006-091-001 - 7971 Gilbert Road, Oakdale (also referred to as 006-091-004 after a recent parcel split

006-091-002 - Gilbert Road, Oakdale

064-031-028 – S Yosemite Ave, Oakdale

063-005-004 – 8700 N Crane Road Oakdale

002-012-063 - 12019 26 Mile Road, Oakdale

062-004-032 - Brady Road, Oakdale

062-004-029 - Brady Road, Oakdale

062-004-002 - 8661 Crane Road, Oakdale

063-004-030 - Walnut St, Oakdale

063-006-001 - Walnut St, Oakdale

064-031-029 - S. Yosemite Ave, Oakdale

## AERATED POND AND RINSE MUD DISPOSAL MANAGEMENT AND SAMPLING PLAN

in support of the

### MUD REUSE PLAN CONAGRA FOODS OAKDALE FACILITY

prepared for

ConAgra Foods, Inc and Brichetto Cattle Co.

June 2009 DE Project No. 102-15 Revision 3



| 1.     | GENERAL INFORMATION AND PURPOSE                      |
|--------|------------------------------------------------------|
| 2.     | PRELIMINARY WASTE CHRACTERISTICS AND MANAGEMENT      |
| ALTERN | IATIVES                                              |
| 2.1    | AERATION POND WASTE CHARACTERISTICS                  |
| 2.2    | RINSE MUD WASTE CHARACTERISTICS                      |
| 3.     | SOIL SAMPLING PROTOCOL                               |
| 3.1    | ADDITIONAL BACKGROUND SAMPLING OF AERATED POND       |
| MUD    | 18                                                   |
| 3.2    | ADDITIONAL BACKGROUND SAMPLING TOMATO RINSE          |
| WATE   | R AND MUD 19                                         |
| 4.     | LAND APPLICATION AREAS AND BEST MANAGEMENT           |
| PRACTI | CES                                                  |
| 4.1    | AREAS AND INITIAL SOIL CHEMICAL RESULTS              |
| 4.2    | BEST MANAGEMENT PRACTICES                            |
| 5.     | APPLICATION AREA BACKGROUND AND SOIL SAMPLING        |
| PROTOC | COL (PREAPPLICATON AND POST APPLICATION PROTOCOL) 38 |
| 5.1    | CROP NUTRIENT UPTAKE SUMMARY                         |
| 5.2    | PHYSIOGRAPHIC SETTING                                |
| 5.3    | SOIL SAMPLING RATIONALE AND APPROACH 41              |
| 6.     | REPORTING                                            |
| 7.     | PROPOSED TIME SCHEDULE FOR WORK                      |

### **LIST OF FIGURES**

| Figure 1 Area Map                                               | 7    |
|-----------------------------------------------------------------|------|
| Figure 2 Aerated Pond Sampling Locations and Mud Depth Contours | . 10 |
| Figure 3a Application Area Map – Kaufman Road                   | . 26 |
| Figure 3b Application Area Map – Valk Road                      | 27   |
| Figure 3c Application Area Map – Albers and Waterford           | 28   |
| Figure 3d Application Area Map – Gilbert Road                   | 29   |
| Figure 3e Application Area Map – N Crane and Brady Road         | 30   |

#### TABLE OF CONTENTS (CONTINUED)

| Figure 3f Application  | Area Map – 26                 | 6 Mile Road                       |  |
|------------------------|-------------------------------|-----------------------------------|--|
| i guie of ripplication | $2 \operatorname{Incumup} 20$ | <i>i</i> iiiic i iiiiii iiiiiiiii |  |

#### LIST OF TABLES

| Table 1 Selected Analytical Parameter Results                         | 11 |
|-----------------------------------------------------------------------|----|
| Table 2 CAM Total Metals                                              | 12 |
| Table 3 DTPA Metals,                                                  | 13 |
| Table 4 Selected Rinse Mud 2004 Characteristics and 503 Metal Results | 16 |
| Table 5 Proposed Long-term Land Application Areas                     | 21 |
| Table 6 2004/2005/2008 Background Soil Analytical Results             | 25 |
| Table 7 Application Summary                                           | 37 |
| Table 8 By-Product and Soil Analytical Parameters                     | 44 |

#### LIST OF APPENDICES

| APPENDIX A | Laboratory Analytical Results from 2007 Aerated Pond      |
|------------|-----------------------------------------------------------|
|            | Sampling and Rinse Mud Sampling Efforts                   |
| APPENDIX B | Laboratory Analytical Results - May 2005 Application Area |
|            | Soils                                                     |
| APPENDIX C | Daily Mud Application Log Form and APN Maps               |
|            |                                                           |

# **1. GENERAL INFORMATION AND PURPOSE**

Dunn Environmental Inc. (DE), on behalf of ConAgra Foods – Oakdale (ConAgra) has prepared this Aerated Pond and Rinse Mud Waste Characterization, Management and Soil Sampling Plan for approval by Stanislaus County and implementation. This document has been developed in a similar manner as the Report of Waste Discharge (ROWD) for a Waiver of Waste Discharge Requirements (WDRs), as per the Central Valley Regional Water Quality Control Board (RWQCB) Resolution No. R5-2003-008. Specific elements have been added to comply with the Stanislaus County Food Processing By-Products Use Program. This program was revised in May 2006 and the Manual of Best Practices for Application of Food Processing By-Products on Farmlands was issued on June 29, 2007. Regulations for the Use of Food Processing By-Products in Stanislaus County for Permitted Use Sites have been utilized to develop this plan and will be followed specifically.

The *Aerated Pond By-Products Investigation Work Plan* was issued and approved by Stanislaus County Environmental Health during the first week in October, 2007. The results of that investigative study are contained herein.

The waste stream consists of two sources of by-product: tomato/bean plant residue mud that has settled out from the plant process and wastewater discharge (pond mud), and flume water residue (rinse mud). Both are collectively referred to as "mud" in this management plan; however these byproducts will be tracked separately and handled separately as necessary. The pond mud is comprised of sediment, soil, degraded plant and fruit organics. The pond mud is typically a green to dark gray, sandy silt slurry mixture with varying content of organic and inorganic sand particles. Black muck horizons were common within the silt matrix. The rinse mud is a soil concentrate generated from the floating of tomatoes out of the truck. Rinse mud consists of solids left behind after tomatoes are floated out of truck beds using water. This material consists of sediment, soil and plant matter with a high water content. This proposal includes the option to amend existing crop acreage surface soils with the pond mud accumulate and rinse mud.

### Conditions of the Stanislaus County Approval and Questions Addressed

The soil amendments (by-product) will be hauled and applied with the following conditions and detailed within this plan:

• Extensive laboratory analytical testing has already occurred and will take place during application to assess the physical and chemical

| ConAgra Foods, Oakdale - Aerat | ed Pond and Rinse Mud Disposal Plan | June 2009  |
|--------------------------------|-------------------------------------|------------|
| DE Project No: 102-15          | 1                                   | Revision 3 |

characteristics of the soil. pH target values are anticipated to range from 6 to 8 standard pH units for the pond muds. Tomato rinse muds will be allowed to range from 3.5 to 12 standard pH units.

- ConAgra will create drying areas on site when needed to minimize liquid impacts to hauling and the fields;
- Some stockpiling of mud will take place within the aerated pond and above the pond water level for drying;
- Tomato rinse mud will be generated during the tomato growing season at a rate of up to 10 truck loads per day (approximately 12 tons per load) on an intermittent basis;
- Pond mud quantities generated will range from 12 truck loads for a short trial period or intermittent dredging up to a full time dredging operation at 50 truck loads per day. The maximum tonnage per load will typically be 10 tons per load. A polymer (anionic polyacylamide) composed of biodegradable soil supplement that degrades entirely within 72 hours of application may be used.
- Truck traffic may occur over a 24 hour period and up to a three week duration during the full scale dredge. However, typical hours of operation will be from 6 AM to 6PM, seven days a week.
- Haulers will follow all local and California Department of Transportation Requirement to secure and load trucks. Typically 60% percent loads may be used. The loads will be covered.
- Caustic or acid solutions or materials are prohibited;
- Mud application will be managed and controlled in accord with the • written waste management plan (WMP) describing best management practices (BMPs) as developed herein;
- Mud after spreading will be incorporated into the soil within 72 hours to prevent nuisance conditions (i.e. flies and odors);
- Manure may be used for additional adsorption and assist in the application of material using a manure spreader.
- Equipment available on site will consist of the following: 2 375 hp tractors, 2 - drag scrapers for tree access, 1 - 16' wide and a smaller disc for tree access, 1 – scoop loader, 2 – 9yd manure spreaders and a minimum 500 gallon water tank;
- Minimal handling – Long term storage of by-product off site is not proposed; after dredging, direct haul to the fields is proposed;
- Waste constituents must be consumed as a benefit in soil and plant on ٠ which waste is applied and/or by crops which will be commercially harvested. The proposed application periods are in the spring and fall

after harvest at agronomic rates of application;

- Hauling and application will take place over the majority of the year. Rinse muds will applied during the tomato season;
- Site maps of the potential fields for use are provided and detailed in Table 5. Soil types, risk to water bodies and parcel map details are provided;
- The list of adjoining parcels and owner information has been generated by the County and ConAgra and will provided upon approval of this plan;
- John Brichetto is the land owner, operator and potential mud hauler; ٠
- Other County registered haulers including Hummer or Gilton Disposal may be utilized;
- Hauling routes are provided on Table 5 and the maps;
- Buffers or setbacks will be created around proposed application areas. A 100 ft by-product setback will be maintained from adjacent non-owned agricultural areas. A 300 ft by-product setback will be maintained from off site residences and public property, and a 150 ft by-product setback will be maintained from owned on site residences;
- Haul and application equipment will consist of vacuum tank or manure spreader and field disc tractor detailed within;
- Daily records will be kept and reported to track type, volume and follow up application issues.
- The following potential nuisance conditions will be addressed in the following manner:
  - 0 *Excessive Liquid and Moisture:* Excessive liquid and moisture accumulation will be addressed by the assessment of water content prior to shipping and field preparation efforts. A drying area will used on the ConAgra facility prior to hauling, if available or necessary. The grading of the site will be completed so that maximum adsorption will occur. Staging area and field preparation may consist of the application of dry manure or compost in a thin lift to maximize adsorption. Agronomic rates will be closely observed for these applications. Dry product will be added to reduce the percolation of the wet material.
  - 0 *Excessive Noise*: Utilized equipment will be in good working condition to minimize excessive noise. In addition, the rural setting of the proposed application areas will reduce the number of noise receptors.

- *Excessive Dust:* In order to reduce potential dust emissions from 0 roadway and site use, a water truck with spray nozzles will be used as warranted. Road gravel, composed of 2-inch or greater size gravels, will be used. Speed reduction signs will be used as necessary.
- 0 *Excessive Objectionable Odor:* Haulers will cover loads from the ConAgra Facility to the application area. To reduce objectionable odors at the application fields, spreading and disking will be the primary mitigation measure. Earlier application or re-disking will be completed as needed. If odors persist, different staging and application area locations will be selected.
- *Excessive Fly, Mosquito and/or Vector Nuisance:* Similar mitigation Ο measures used for odors will be used to reduce flies, mosquito and vector concerns. Incorporation with spreading and disking within 48 to 72 hours will reduce the potential of nuisances and odors discussed above. If nuisances persist, changed locations will be strongly considered and moisture content will be modified with mixing. Approved spray equipment and insecticides may be used.
- Severe and Inclement Weather: If rain is forecasted, application of 0 by-product will not take place. Storage areas that drain to the ConAgra Wastewater Treatment Facility will be used for staging purposes. Stored piles will be place on plastic and covered with plastic as necessary. A general goal of seven days of drying (insignificant rain events resulting in no saturation) will be used prior to by-product placement on fields.

In order to expedite and satisfy the requirements, this document provides a description of the waste characteristics, waste management plan and soil sampling for the proposed application of the mud incorporated into nonirrigated winter oats and the micro-irrigated almond/walnut crop land.

Note that the soil sampling plan portion of this document has been developed in accordance with the ConAgra revised Monitoring and Reporting Program No. R5-2002-0098 (MRP) dated December 12, 2003 and California Water Code § 13267 and the Stanislaus County Food Processing Reuse Program (Ordinance and Rules). As required by the MRP, this document provides a method of obtaining soil samples to determine soil quality and amendment conditions and sources of potential elevated levels of nutrients related to the land application of mud. ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal Plan June 2009

The ConAgra Oakdale Facility and the existing wastewater application area are located in T2S, R10E, MDB&M in Oakdale, California within Stanislaus County. The proposed 2009 application area and future application areas are north and south of the plant as depicted on Figure 1. Other areas for future use are detailed herein. The soil types, proximity to surface water and proposed soil sampling locations are detailed within this document.

The purpose of this document is to provide an initial mud characterization and detailed waste management plan and propose a soil sample location rationale and sampling protocols. The discharge is associated with the numerous years of collection of the Oakdale plant water and mud discharge. The data objective of the plan is to determine the ability of crops to uptake available nutrients through assessment and soil sampling within and below the plant root mass. An extensive cropland survey has been completed and soil sampling has been conducted to assess background conditions. Additional soil sampling and documentation of field conditions, proximity to surface water discharge locations and potential water ponding areas will be completed prior to application.

### Mud Generator:

ConAgra Foods, Inc. – Oakdale Facility 554 South Yosemite Ave. Oakdale, CA 95361 Contact Person – Jeff Schultz – 209-848-7295, cell - 949-244-9224

### Application Property Owner, Operator and Potential Hauler:

Brichetto Cattle Co. P.O. Box 11600 Oakdale, CA 95361-0595 Contact Person - Mr. John Brichetto – cell (209) 404-6550 2008 Application Stanislaus County Parcel Nos. 63-28-26, 63-28-11, portion of 02-59-04, 2009 through 2010 Parcels listed on Table 5. Other haulers registered with the County will be selected as needed like Hummer and Gilton Disposal.

**Professional Agronomist** – Mr. Terry Prichard – (209) 886-5301 California Certified Lab – Argon Laboratories and Denele Analytical Services (209) 581-9280

### Type and Amount of Pond and Rinse Mud to be Land Applied:

For Aerated Pond, tomato and bean processing sludge or slurry from the plant wastewater operation is typically composed of 60% solids. This pond bottom will be dredged using a backhoe or dredge machine from the pond bottom and

directly land applied with limited interim storage on site. Interim storage will take place within the corners of the existing aerated pond, if needed, where dredged material can be stock piled for drying and later application. The anticipated quantity of mud to be removed over several years will be based on the accumulated volume of approximately 10 feet presently. The period of mud removal operation will be synchronized with almond/walnut tree and row crop growing seasons over several years or on idle forage crops. Young trees may have applications during all parts of the season. Several proposed land application areas will be used as detailed in the next sections.

Tomato Rinse Water Mud is an undiluted semi-liquid mud, composed of soil and broken tomatoes, tomato juice that typically contains 75% water and 25% solids. The amount of rinse mud generated per day during freshpack season is estimated at 32 cubic yards or typically 6,500 gallons or per day. During 2004 and 2005 tomato season, an estimated total quantity 3,079 tons and 2,843 tons, respectively, of the water and mud mixture was disposed of at the Dos Rios Food Processing Site in Modesto, CA. This equates to approximately three truck loads per day at nine tons per load. The total gallon estimate during the two tomato seasons were approximately 650,000 gallons. During the 2007 and 2008 Season, quantities ranged from 600 to 800 tons per month or up to 3,200 tons per year for the fresh pack season from approximately July to October of each year. Collection areas will take within the flume box, serum tanks, roll off box and liquid storage tanks in the agricultural operations area on site. Application will be synchronized with the almond/walnut tree growing season and with idle periods as described above. Young tree crops may be applied throughout the year. Mature trees may be used primarily after harvest and in the spring depending on the five year disking schedule.



# 2. PRELIMINARY WASTE CHRACTERISTICS AND MANAGEMENT ALTERNATIVES

## 2.1 AERATION POND WASTE CHARACTERISTICS

As indicated both fresh water and recycled water is used to process plant products which results in a relatively high organic liquid with settleable solids. The process water has lower water pH which increases the potential of metal mobilization.

ConAgra in preparation of this submittal has collected over 19 pond mud samples from the base of the aerated pond during the Fall 2007 season. The selected results are provided on Tables 1 through 3 as preliminary characteristic of the mud as a soil amendment. The laboratory results are provided in Appendix A.

Pond mud samples were taken at the ConAgra Aerated Wastewater Pond by DE employees on September 9, 2007 and October 23, 2007. Prior to each sampling event, ConAgra discharged pond water in order to increase freeboard to approximately 4 to 6 feet. Aerators were temporarily turned off for sampling. A small motor boat was provided by ConAgra for depth measurement and sampling. For each location, a depth-to-mud measurement and location waypoint were recorded. Depth-to-mud measurements were recorded using a wire sounder at specific waypoints using a hand-held Garmin Summit GPS unit. When possible, pond mud samples were collected as described below. Figure 2 provides a depiction of the depth to the mud surface measured from the top of berm. This depth was converted to top of berm based on the freeboard measurement for the respective day.

Sampling was performed using a stainless steel soil sampling tube attached to an 11 foot stainless steel extension rod. The sampling tube was pushed past the soft upper layers of sediment until firm material was encountered. The sample was then withdrawn and described according to color, consistency, and grain size. Samples were placed into plastic zip-lock bags and labeled according to waypoint number. Locations at which depth-to-mud exceeded the length of the sampler were logged for location and depth-to-mud only. Samples were periodically taken to shore and placed in an ice cooler. The samples were typically black and green in color composed of silty sand to sandy silt material with a consistency of high organic elastic mud. For each sampling event, a chain-

ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal Plan DE Project No: 102-15

of-custody form was completed and a courier from Argon Labs/Denele Agra-Link labs of Turlock, CA picked up the samples from ConAgra the same day. A summary of the analytical data is presented on Tables 1 through 3 and laboratory data is presented in Appendix A.

The metal results are provided as CAM (California Assessment Metals) and DTPA values (Plant Available) for the 2007 aerated pond mud. CAM values reflect total values and DTPA values reflect the portion of nutrients available to plants. Total inorganic results are as follows: nitrate as N ranged from nondetect to 7.1 mg/L, pH ranged from 7.4 to 8.3, total dissolved solids ranged from 1,300 to 6,000 mg/L, specific conductance ranged from 320 to 7,200  $\mu$ S/cm, and total fixed solids ranged from 110 to 400 g/L. Total organic carbon ranged from 1,000 to 32,000 mg/kg. Average total and extractable metal results are presented in the Tables 1, 2 and 3 were compared to Title 14 Compost maximum acceptable metal concentrations on a dry weight basis. None of the analyzed total or extractable metal values are above the Title 14 Compost MCLs.

### " Section 17868.2. Maximum Metal Concentrations.

(a) Compost products derived from compostable materials that contains any metal in amounts that exceed the maximum acceptable metal concentrations shown in Table shall be designated for disposal, additional processing, or other use as approved by state or federal agencies having appropriate jurisdiction.

| Maximum Acceptable Metal Concentrations                                                                                                |                                                            |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Constituent                                                                                                                            | Concentration (mg/kg)<br>on dry weight basis               |  |  |  |  |  |  |  |  |
| Arsenic (As)<br>Cadmium (Cd)<br>Chromium (Cr)<br>Copper (Cu)<br>Lead (Pb)<br>Mercury (Hg)<br>Nickel (Ni)<br>Selenium (Se)<br>Zinc (Zn) | 41<br>39<br>1200<br>1500<br>300<br>17<br>420<br>36<br>2800 |  |  |  |  |  |  |  |  |



### Table 1 Selected Analytical Parameter Results Aerated Pond Mud

|        | ConAgra, Oakdale |          |          |          |     |           |             |         |         |             |           |          |           |         |         |          |
|--------|------------------|----------|----------|----------|-----|-----------|-------------|---------|---------|-------------|-----------|----------|-----------|---------|---------|----------|
|        |                  |          | Total    | Total    |     | Total     |             | Total   | Total   | Phosphorous |           |          |           |         |         |          |
|        | Nitrate          | Ammonia  | Kjeldahl | Nitrogen |     | Dissolved | Specific    | Fixed   | Organic | as P - Bray |           |          |           |         |         |          |
| Sample | as N             | Nitrogen | Nitrogen | as N     |     | Solids    | Conductance | Solids  | Carbon  | Method      | Potassium | %        | Magnesium | Calcium | Sodium  | Chloride |
| Name   | (mg/kg)          | (mg/kg)  | (mg/kg)  | (mg/kg)  | рН  | (mg/L)    | (uS/cm)     | (mg/L)  | (mg/kg) | (mg/kg)     | (mg/kg)   | Moisture | (mg/kg)   | (mg/kg) | (mg/kg) | (mg/kg)  |
| WP-5   | <2.0             | ND       | 460      | 460      | 7.7 | -         | 2,500       | -       | 1,000   | 1           | -         | 43       | -         | -       | -       | -        |
| WP-9   | <2.0             | ND       | 390      | 390      | 7.6 | -         | 1,200       | -       | 17,000  | 0.8         | -         | 41       | -         | -       | -       | -        |
| WP-11  | <2.0             | ND       | 180      | 180      | 7.6 | -         | 530         | -       | 16,000  | 0.2         | -         | 33       | -         | -       | -       | -        |
| WP-12  | <2.0             | ND       | 60       | 60       | 7.4 | -         | 320         | -       | 18,000  | <0.2        | -         | 38       | -         | -       | -       | -        |
| WP-28  | 1.1              | ND       | 1,700    | 1,700    | 8.2 | 4,100     | 3,000       | 310,000 | 23,000  | 88          | 440       | 39       | 6500      | 660     | 290     | 94       |
| WP-30  | 0.6              | ND       | 1,600    | 1,600    | 7.9 | 3,300     | 1,800       | 270,000 | 21,000  | 84          | 540       | 29       | 4100      | 620     | 210     | 86       |
| WP-31  | <1.0             | ND       | 1,700    | 1,700    | 8   | 3,600     | 4,100       | 210,000 | 21,000  | 76          | 930       | 34       | 3200      | 630     | 180     | 57       |
| WP-32  | 0.7              | ND       | 3,000    | 3,000    | 8.2 | 2,400     | 7,000       | 110,000 | 21,000  | 90          | 820       | 21       | 2000      | 590     | 190     | 88       |
| WP-43  | 0.4              | ND       | 3,200    | 3,200    | 8.3 | 1,500     | 6,900       | 130,000 | 17,000  | 86          | 750       | 21       | 2100      | 650     | 170     | 88       |
| WP-47  | 0.5              | ND       | 2,400    | 2,400    | 8.1 | 2,600     | 5,900       | 140,000 | 20,000  | 94          | 840       | 22       | 2100      | 610     | 160     | 47       |
| WP-48  | 0.4              | ND       | 2,400    | 2,400    | 8.2 | 2,300     | 6,200       | 380,000 | 15,000  | 58          | 980       | 41       | 2700      | 580     | 170     | 63       |
| WP-53  | 0.4              | ND       | 2,800    | 2,800    | 8.2 | 2,200     | 4,600       | 220,000 | 23,000  | 82          | 940       | 36       | 3000      | 520     | 160     | 95       |
| WP-59  | 0.7              | ND       | 2,500    | 2,500    | 8.1 | 1,700     | 7,200       | 120,000 | 21,000  | 78          | 760       | 20       | 2200      | 1500    | 150     | 93       |
| WP-61  | 0.5              | ND       | 1,600    | 1,600    | 8.1 | 1,300     | 3,900       | 400,000 | 17,000  | 106         | 830       | 39       | 2400      | 640     | 160     | 55       |
| WP-64  | 0.7              | ND       | 1,300    | 1,300    | 7.4 | 6,000     | 2,500       | 200,000 | 32,000  | 46          | 450       | 31       | 3100      | 970     | 250     | 91       |
| WP-65  | 0.5              | ND       | 2,000    | 2,000    | 7.9 | 2,400     | 4,600       | 180,000 | 23,000  | 114         | 810       | 27       | 2700      | 650     | 170     | 75       |
| WP-66  | 0.5              | ND       | 1,200    | 1,200    | 8   | 1,900     | 5,400       | 130,000 | 19,000  | 82          | 730       | 22       | 2100      | 660     | 180     | 88       |
| WP-67  | 0.3              | ND       | 1,800    | 1,800    | 8   | 1,700     | 4,300       | 290,000 | 22,000  | 114         | 930       | 34       | 2700      | 570     | 190     | 110      |
| WP-72  | 1.6              | ND       | 2,600    | 2,600    | 8.1 | 2,000     | 2,700       | 300,000 | 27,000  | 122         | 380       | 40       | 4000      | 470     | 190     | 66       |

Notes: "-" Not analyzed; "<2.0" or "ND" indicates a non-detect

### Table 2 **CAM Total Metals** Units in mg/kg Aerated Pond Mud ConAgra, Oakdale

|          | 1        |         | T      |           |         |          |        |        | <u> </u> | T    |           |         |            |        |          |        |          |          | 1    |
|----------|----------|---------|--------|-----------|---------|----------|--------|--------|----------|------|-----------|---------|------------|--------|----------|--------|----------|----------|------|
| Sample   |          |         |        |           |         |          |        |        |          |      |           |         |            |        |          |        |          |          |      |
| Name     | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Cobalt | Copper | Iron     | Lead | Manganese | Mercury | Molybdenum | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc |
| WP-5     | <2.0     | 1.5     | 90     | <1.0      | <1.0    | 7.8      | 3.6    | 8.6    | -        | 10   | -         | < 0.1   | 1          | 19     | <1.0     | <1.0   | <1.0     | 6.2      | 58   |
| WP-9     | <2.0     | 1.9     | 92     | <1.0      | <1.0    | 6.8      | 3.4    | 9.5    | -        | 12   | -         | < 0.1   | 1          | 20     | <1.0     | <1.0   | <1.0     | 6.4      | 56   |
| WP-11    | <2.0     | 1.3     | 87     | <1.0      | <1.0    | 5.9      | 3.7    | 6.1    | -        | 12   | -         | < 0.1   | 1.2        | 18     | <1.0     | <1.0   | <1.0     | 6.4      | 45   |
| WP-12    | <2.0     | 1.2     | 88     | <1.0      | <1.0    | 3.2      | 4.8    | 0      | -        | 3.2  | -         | < 0.1   | <1.0       | 5.6    | <1.0     | <1.0   | <1.0     | 7        | 17   |
| WP-28    | <2.0     | 2.1     | 77     | <1.0      | <1.0    | 27       | 4.1    | 43     | 12000    | 5.5  | 230       | < 0.1   | 1.2        | 25     | <1.0     | <1.0   | <1.0     | 24       | 83   |
| WP-30    | <2.0     | 2       | 90     | <1.0      | <1.0    | 30       | 4.2    | 53     | 13000    | 5.6  | 180       | < 0.1   | 1          | 25     | <1.0     | <1.0   | <1.0     | 24       | 76   |
| WP-31    | <2.0     | 2.3     | 89     | <1.0      | <1.0    | 29       | 3.9    | 49     | 11000    | 5.4  | 140       | < 0.1   | <1.0       | 25     | <1.0     | <1.0   | <1.0     | 24       | 75   |
| WP-32    | <2.0     | 1.5     | 63     | <1.0      | <1.0    | 21       | 2.7    | 37     | 7200     | 3.5  | 100       | < 0.1   | 1.1        | 16     | <1.0     | <1.0   | <1.0     | 16       | 55   |
| WP-43    | <2.0     | 1.5     | 58     | <1.0      | <1.0    | 18       | 2.7    | 32     | 8000     | 3.3  | 130       | < 0.1   | <1.0       | 15     | <1.0     | <1.0   | <1.0     | 16       | 50   |
| WP-47    | <2.0     | 1.6     | 59     | <1.0      | <1.0    | 19       | 2.7    | 31     | 8200     | 3.7  | 130       | 0.3     | 1.1        | 17     | <1.0     | <1.0   | <1.0     | 17       | 54   |
| WP-48    | <2.0     | 2       | 71     | <1.0      | <1.0    | 26       | 4      | 36     | 12000    | 4.2  | 220       | < 0.1   | <1.0       | 22     | <1.0     | <1.0   | <1.0     | 20       | 52   |
| WP-53    | <2.0     | 1.9     | 60     | <1.0      | <1.0    | 20       | 3      | 35     | 8700     | 4.9  | 130       | < 0.1   | <1.0       | 22     | <1.0     | <1.0   | <1.0     | 20       | 59   |
| WP-59    | <2.0     | 1.6     | 58     | <1.0      | <1.0    | 17       | 2.7    | 33     | 7200     | 4.2  | 110       | < 0.1   | <1.0       | 17     | <1.0     | <1.0   | <1.0     | 17       | 56   |
| WP-61    | <2.0     | 1.5     | 61     | <1.0      | <1.0    | 19       | 3.3    | 25     | 11000    | 4.7  | 130       | < 0.1   | <1.0       | 18     | <1.0     | <1.0   | <1.0     | 26       | 50   |
| WP-64    | <2.0     | 2.8     | 71     | <1.0      | <1.0    | 23       | 3.3    | 37     | 10000    | 9.9  | 140       | < 0.1   | <1.0       | 29     | <1.0     | <1.0   | <1.0     | 28       | 66   |
| WP-65    | <2.0     | 3       | 75     | <1.0      | <1.0    | 24       | 3.6    | 40     | 8900     | 10   | 160       | < 0.1   | <1.0       | 31     | <1.0     | <1.0   | <1.0     | 30       | 71   |
| WP-66    | <2.0     | 1.6     | 52     | <1.0      | <1.0    | 15       | 2.5    | 30     | 7700     | 4.3  | 120       | < 0.1   | <1.0       | 19     | <1.0     | <1.0   | <1.0     | 19       | 52   |
| WP-67    | <2.0     | 2.1     | 77     | <1.0      | <1.0    | 23       | 3.9    | 38     | 13000    | 8.8  | 210       | < 0.1   | <1.0       | 24     | <1.0     | <1.0   | <1.0     | 27       | 69   |
| WP-72    | <2.0     | 2.8     | 87     | <1.0      | <1.0    | 28       | 4.2    | 49     | 13000    | 9.2  | 190       | < 0.1   | 1          | 30     | <1.0     | <1.0   | <1.0     | 31       | 92   |
| Average  | NA       | 1.9     | 74     | NA        | NA      | 19       | 3.5    | 31     | 10060.0  | 6.5  | 155       | NA      | 1.1        | 21     | NA       | NA     | NA       | 19       | 60   |
| Title 14 |          |         |        |           |         |          |        |        |          |      |           |         |            |        |          |        |          |          |      |
| Compost  |          |         |        |           |         |          |        |        |          |      |           |         |            |        |          |        |          |          |      |
| MCLs     | NA       | 41      | NA     | NA        | 39      | 1200     | NA     | 1500   | NA       | 300  | NA        | 17      | NA         | 420    | 36       | NA     | NA       | NA       | 2800 |

Notes: "-" Not analyzed; "<2.0" or similar notation indicates a non-detect

12

June 2009

### Table 3 DTPA Metals, Units in mg/kg Aerated Pond Mud ConAgra, Oakdale

|          |          |         |        |           |         |          |        |        | Ŭ    |      |           |         |            |        |          |        |          |          |      |
|----------|----------|---------|--------|-----------|---------|----------|--------|--------|------|------|-----------|---------|------------|--------|----------|--------|----------|----------|------|
| Sample   |          |         |        |           |         |          |        |        |      |      |           |         |            |        |          |        |          |          |      |
| Name     | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Cobalt | Copper | Iron | Lead | Manganese | Mercury | Molybdenum | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc |
| WP-5     | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 290  | 2.3  | <20       | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | 1        | <5.0 |
| WP-9     | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 330  | 3.1  | <20       | < 0.10  | <1.0       | 1.6    | <1.0     | <1.0   | <1.0     | 1.3      | 5.6  |
| WP-11    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 220  | 3.2  | <20       | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | 1.2      | <5.0 |
| WP-12    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 48   | <1.0 | 22        | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | <1.0     | <5.0 |
| WP-28    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 190  | 3.9  | <20       | < 0.10  | <1.0       | 1.9    | <1.0     | <1.0   | <1.0     | 1.3      | 13   |
| WP-30    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 300  | 1.5  | <20       | < 0.10  | <1.0       | 1.4    | <1.0     | <1.0   | <1.0     | 1.4      | 5.2  |
| WP-31    | <2.0     | <1.0    | 8.4    | <1.0      | <1.0    | <1.0     | <1.0   | 6.4    | 220  | 1.5  | <20       | < 0.10  | <1.0       | 1.4    | <1.0     | 18     | <1.0     | 1.5      | 22   |
| WP-32    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 4.7    | 180  | 1.3  | <20       | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | 1.7      | 18   |
| WP-43    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 6.8    | 140  | <1.0 | <20       | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | 1.2      | 18   |
| WP-47    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 5.2    | 140  | 1.1  | <20       | < 0.10  | <1.0       | 1.5    | <1.0     | <1.0   | <1.0     | 1.3      | 22   |
| WP-48    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 220  | 1.1  | <20       | < 0.10  | <1.0       | 1      | <1.0     | <1.0   | <1.0     | 1.2      | 5.5  |
| WP-53    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 260  | 1.5  | <20       | < 0.10  | <1.0       | 3.2    | <1.0     | <1.0   | <1.0     | 1.6      | 11   |
| WP-59    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 2.2    | 140  | <1.0 | <20       | < 0.10  | <1.0       | <1.0   | <1.0     | <1.0   | <1.0     | <1.0     | 9.5  |
| WP-61    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 120  | 1.1  | <20       | < 0.10  | <1.0       | 1      | <1.0     | <1.0   | <1.0     | 1.4      | 7    |
| WP-64    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 2.6    | 250  | 3.2  | <20       | < 0.10  | <1.0       | 6.1    | <1.0     | <1.0   | <1.0     | 1.8      | 14   |
| WP-65    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | 3.3    | 240  | 2.7  | <20       | < 0.10  | <1.0       | 4.4    | <1.0     | <1.0   | <1.0     | 2.1      | 14   |
| WP-66    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 210  | 1.4  | <20       | < 0.10  | <1.0       | 2      | <1.0     | <1.0   | <1.0     | 1.4      | 9.9  |
| WP-67    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 220  | 1.6  | <20       | < 0.10  | <1.0       | 1.7    | <1.0     | <1.0   | <1.0     | 1.5      | 5.6  |
| WP-72    | <2.0     | <1.0    | <5.0   | <1.0      | <1.0    | <1.0     | <1.0   | <2.0   | 440  | 3.6  | <20       | < 0.10  | <1.0       | 7.2    | <1.0     | <1.0   | <1.0     | 2.4      | 7.8  |
| Average  | NA       | NA      | 8.4    | NA        | NA      | NA       | NA     | 4.5    | 219  | 2.1  | 22        | NA      | NA         | 2.6    | NA       | 18     | NA       | 1.5      | 12   |
| Title 14 |          |         |        |           |         |          |        |        |      |      |           |         |            |        |          |        |          |          |      |
| Compost  |          |         |        |           |         |          |        |        |      |      |           |         |            |        |          |        |          |          |      |
| MCLs     | NA       | 41      | NA     | NA        | 39      | 1200     | NA     | 1500   | NA   | 300  | NA        | 17      | NA         | 420    | 36       | NA     | NA       | NA       | 2800 |

Notes: "-" Not analyzed; "<2.0" or similar notation indicates a non-detect

13

Total arsenic concentrations for mud range from 1.5 to 2.8 ppm, well below the upper levels allowed in Title 14. Refer to Table above on limits. In addition, these arsenic results are similar for background soil sample results detailed in Section 4 and on Table 6. These results are also typical for soils in the Central Valley.

## 2.2 RINSE MUD WASTE CHARACTERISTICS

Based on information documented by the RWQCB, ConAgra Foods and CivilTec Engineering Inc. (U-Pond Closure Report, Dated October 23, 2003), the following U-Pond summary has been provided. For 2000 to 2002 during the fresh pack season, the U-Pond was used to recycle flume water and collect rinse mud and plant residue. The U-Pond was constructed in 2000 with a width of approximately 50 feet and a travel distance of 640 feet. The depth of the pond is estimated at approximately 10 feet below plant grade. The pond capacity is 1 million gallons. Due to high percolation rates, fresh water is used to augment the recycled water. Since the tomatoes are automatically picked, the flume water contains dirt, tomato stems and tomato residue from the fresh-tomato pick and transport. No chemicals are used in the recycling or fresh water flushes. This is not a typical wastewater process for the site since processing does not take place other than the contact of source water with the raw tomatoes and byproduct.

These residues, however, contain higher amounts of organics, sulfur and nitrates which contribute to odors during the process season. A new concrete-lined settling tank has replaced the U-Pond. On August 19, 2003, ConAgra sent a letter to the RWQCB documenting the closure efforts and disposal methodology and sediment characteristics described below, and a copy of the letter is enclosed for reference.

<u>U-pond (Rinse Mud) Waste Material Quantity and Removal</u> – After the 2003 rainy season, the U-Pond was allowed to dry. After drying, the upper two feet of material was removed from the pond bottom for disposal. Based on the size of the pond and truck loads removed, an approximate amount ranging from 2,300 to 2,500 cubic yards was removed from the base of the pond. The material was transported and used for soil amendment on an approximate 175-acre portion of the Brichetto Ranch on 26 Mile Road in Sections 28 and 33, T1S, R10E of the MDB&M. Stanislaus County did provide approval prior to disposal. ALP spreading of Hilmar, California provided information on the cubic yards removed. The waste material was removed in August 2003 and no additional excavation took place.

### **Rinse Mud Sampling Efforts**

2003 Soil Sampling: On May 16, 2003, eight locations within the U-pond were sampled from beneath the two feet of excavated U-Pond material. Samples were taken by ConAgra using a post hole digger and characterized as a sandy soil. One deep excavation and seven shallow excavations were sampled. The seven shallow samples (SH-1 through SH-7) were discarded. The deep excavation (DH) was sampled every foot to a depth of five feet. Samples were labeled and submitted to Weck Laboratories in City of Industry, CA, with a duplicate sample for each depth interval. Samples were analyzed for chloride, nitrate, sulfate, alkalinity, ammonia, calcium, Electrical Conductivity (EC), copper, iron, potassium, magnesium, manganese, sodium, phosphorus, pH, Total Kjeldahl Nitrogen (TKN), Total Organic Carbon (TOC), and zinc. The results are discussed below and analytical reports are provided in Appendix A.

As indicated both fresh water and recycled water is used to rinse the tomatoes and lift them from the transport trucks to the flume catch and conveyor system. The recycled water becomes heavy with sediment during the recycle period which results potentially in the lowering of water pH which may influence the mobility of metals native to the soils and exposed metal pipes. Fresh water enhancements or treatment may be necessary to stabilize pH and reduce the potential of metal mobilization.

<u>2004 Rinse Mud Sampling</u>: ConAgra in preparation of a previous waiver request collected eight samples during the 2004 tomato season. The selected results are provided on Table 4 as preliminary characteristic of the rinse mud as a soil amendment. As referenced, the rinse mud samples typically consist of 75 percent water and 25 percent solids. The laboratory results are provided in Appendix A.

Table 4 Selected Rinse Mud 2004 Characteristics and 503 Metal Results ConAgra Oakdale Mud Plan

| Sample      | рΗ  | Soluble | Chloride | Nitrogen  | Boron     | Zinc      | Total   | Total    |  |  |  |
|-------------|-----|---------|----------|-----------|-----------|-----------|---------|----------|--|--|--|
| Analysis    |     | Salts   | Percent  | Pounds    | Pounds    | Pounds    | Arsenic | Chromium |  |  |  |
| Date        |     | dS/m    |          | Nutrients | Nutrients | Nutrients | ppm     | ppm      |  |  |  |
|             |     |         |          | per Ton   | per Ton   | per Ton   |         |          |  |  |  |
|             |     |         |          | Wet       | Wet       | Wet       |         |          |  |  |  |
| 7/21/04     | NA  | NA      | NA       | 4.39      | 0.0458    | 0.091     | 2.6     | 14.3     |  |  |  |
| 8/05/04     | 6.2 | 4.1     | 0.31     | 2.87      | < 0.01    | 0.0208    | 2.5     | 12.9     |  |  |  |
| 8/11/04     | 6.5 | 1.6     | 0.14     | 1.1       | 0.005     | 0.005     | NA      | NA       |  |  |  |
| 9/02/04     | 6.8 | 5.3     | 0.29     | 4.16      | 0.04      | 0.08      | NA      | NA       |  |  |  |
| 9/02/04     | 5.5 | 1.8     | 0.10     | 4.09      | 0.026     | 0.026     | 1.2     | 27.3     |  |  |  |
| 9/16/04     | 5.3 | 2.1     | 0.01     | 12.41     | 0.06      | 0.06      | ND      | 36.2     |  |  |  |
| 9/24/04     | 5.5 | 2.4     | 0.06     | 10.08     | 0.073     | 0.049     | 1.5     | 12       |  |  |  |
| 10/04/04    | 5.7 | 2.5     | 0.32     | 3.82      | 0.0225    | < 0.0225  | NA      | NA       |  |  |  |
| 10/06/04    | 5.4 | 2.3     | 0.02     | 2.93      | 0.062     | 0.0312    | 1.5     | 15.9     |  |  |  |
| Average     |     |         |          | 5.09      | 0.0417    | 0.0454    |         |          |  |  |  |
| Nutrients   |     |         |          |           |           |           |         |          |  |  |  |
| Lbs/Ton of  |     |         |          |           |           |           |         |          |  |  |  |
| Rinse Mud   |     |         |          |           |           |           |         |          |  |  |  |
| Application |     |         |          |           |           |           |         |          |  |  |  |

NA = Not Available

ND = Non Detect

The results are provided as total values for the 2004 rinse mud mixture and also reflect a portion of the nutrients that are available to the plants. Sampling in the future will include both the extractable and total results. Total inorganic results are as follows; pH ranged from 5.2 to 6.8; soluble salts ranged from 1.8 to 5.3; total nitrogen ranged from 0.47 to 2.41 percent or averaged 5.09 lbs per ton of amendment; total metal results were encountered as follows: arsenic 1.2 to 2.6 ppm, boron 14 to 119 ppm (0.04 lbs per ton of amendment) and chromium from 12.9 to 36.2 ppm.

The trends in acidic pH values toward the end of the growing season may attribute to the mobility and influence the presence of chromium and boron concentrations within the samples tested. These metal values have not exceeded cleanup goals for contaminated sites established by the State except for Arsenic.

As per the 2005 guidelines established in the California EPA, Dept. of Toxic Substances and Toxic Control, Office of Environmental and Human Health – California Human Health Screening Levels (CHHSLs), the arsenic cleanup level for contaminated sites is 0.24 ppm. Note that tomato rinse mud is not generated from a contaminated facility; and as referenced in this waiver, the rinse mud is considered as compost material and soil enhancement. As per California Code of Regulations Title 14, compost material is allowed to have arsenic levels up to 41 ppm, as referenced above.

Arsenic concentrations, provided on Table 1, for rinse mud range from 1.5 to 2.6 ppm, well under the upper levels allowed in Title 14. In addition, these arsenic results are similar for background soil sample results detailed in Section 4 and on Table 5. These results are also typical for soils in the Central Valley.

ConAgra, as per their adopted WDRs, has been approved to dispose of their tomato rinse mud during the tomato harvest season at the permitted Dos Rios Food Processing Residue Use Site at 3359 Shilo Road in Modesto, CA, owned by Lyons Investments. As referenced three to four truck loads with 2,200 gallons (> 9 tons per load) of rinse water mud per truck load is hauled to the referenced site. This plan document is in support of the local use of this rinse mud for land application. ConAgra reserves the right to continue to use other facilities and investigate alternative beneficial uses for the rinse mud mixture.

2005 and 2007 Soil Sampling Efforts for U-Pond Closure: In June 9, 2005 three test pits were completed to depths ranging from 10 feet to 16 feet. Excavations were completed using a backhoe. One background test pit and two U-Pond test pits were completed. The U-Pond test pits TP-05-1 and TP-05-02 were excavated to 16 and 15 feet in depth, respectively, and were located within the pond bed. The background test pit TP-05-03 was located approximately 50 feet to the southeast of the pond and was completed to a depth of 10 feet due to collapse. Two borings were completed in July 2007 for confirmation of soils and ground water sampling. Samples were submitted to A&L Western Agricultural Laboratories, Inc. for analysis. Please refer to the *Phase II U-Pond Investigation Report (Source Identification)*, dated September 2007 for a summary of the investigations.

## 3.1 ADDITIONAL BACKGROUND SAMPLING OF AERATED POND MUD

When the water level is pumped down in the pond, mud will be collected and analyzed on an as needed or land application timing basis for the list of parameters outlined on Table 8 in Section 5. Both the extractable and total concentration methodologies will be used to assess the plant uptake capabilities and total concentrations of the mud application. Comparisons will be made to the total concentrations and agronomic needs for the nutrient parameters. In addition, the CAM 17 metals will be analyzed. Pre-excavation sampling may be completed which will include hand auger sampling at a frequency and depth to assess the material to be excavated and applied, respective of the 100 tons of material. For the pond mud, we propose collecting one sample per 100 tons of material or up to three times per week at full dredging operation, if necessary based on pre-construction sampling. The collection point within the discharge pumps will vary; however, the sample points will be random selected and the sample collected will be representative of the hauled volume. For the rinse mud, samples will be collected every ten truck loads, using the procedures described above. A limited list of parameters will be used for the rinse mud analytical testing.

Field sampling of the mud will consist of the following protocol: 1) a triggerrelease dip cup will be used to remove an estimated one liter volume of the mud from the pond discharge to a dump truck or spreader, 2) a clean, laboratory provided liter jar or plastic baggie will be used to retain the sample for immediately delivery to the lab, 3) immediate analytical results will be requested, 4) the field program will be documented on field data sheets and chain of custody documentation and 5) samples will be transferred and stored on ice. A California certified laboratory will be used and results will be assessed by a specialist prior to application.

The parameters pH and EC will be collected hourly at a minimum or as appropriate to assess the pH and EC of the mud and discharge fluid. No new handling or drying areas are proposed beyond the limited interim storage within the corners of the existing aerated pond. This will primarily be a direct haul operation.

### 3.2 ADDITIONAL BACKGROUND SAMPLING TOMATO RINSE WATER AND MUD

During the first two weeks of tomato season and on a frequency of every 10 trucks, rinse water and mud will be collected and analyzed on a rush basis for the list of parameters outlined on Table 8 in Section 5. Both the extractable and total concentration methodologies will be used to assess the plant uptake capabilities and total concentrations of the rinse mud application. Comparisons will be made to the total concentrations and agronomic needs for the nutrient parameters. We propose collecting four samples in the first two weeks prior to discharge. The collection point within the flume will vary; however, the lowest point of the flume will be sampled and the sample will be collected of the representative hauled volume.

Field sampling of the mud will consist of the same protocol shown above. The parameters pH and EC will be collected daily to assess the pH and EC of the rinse mud and flume water. Fresh water or tomato serum enhancements or treatment may be necessary to stabilize pH and reduce the potential of metal mobilization. Preferred values of pH will range from 6 to 8 standard units. Rinse mud by products can be discharged at pH levels from 3.5 to 12.0.

# 4. LAND APPLICATION AREAS AND BEST MANAGEMENT PRACTICES

### 4.1 AREAS AND INITIAL SOIL CHEMICAL RESULTS

For the initial field assessments, ConAgra with the assistance of Brichetto Cattle Co. Ranches will use over 779 acres, and during the first year 120 acres of nonirrigated or micro-irrigated crop land will be used. Variations to the schedule of land application use may be considered between years depending on available fields, application periods and annual sampling results. These variations will be documented and reported each year. The details of each parcel and the typical schedule being considered for use are shown on Table 5 below. Each parcel is shown on Figures 3A through 3F. Land use within two parcels or 0.5 miles, whichever is shorter, is shown and usable areas after setbacks are designated with a blue border. On-site well locations, canals, and field drainage directions are also shown.

# Table 5 - Proposed Long-term Application Areas ConAgra Oakdale

| Proposed Year  | Proximity/Risk | Irrigat- | Parcel Number   | Hauling       | Acres  | Usable      | Crop          | Location      | Dominant Soil          | Area Use                                                                                 | On Site                   | On Site                  | Registered                  |
|----------------|----------------|----------|-----------------|---------------|--------|-------------|---------------|---------------|------------------------|------------------------------------------------------------------------------------------|---------------------------|--------------------------|-----------------------------|
| of Application | to Surface     | ion      | and Figure      | Route         |        | Acres       |               |               | Association and        |                                                                                          | Drainage                  | Water Wells              | Co-Owner                    |
|                | Water          |          |                 |               |        | After       |               |               | Drainage and Water     |                                                                                          |                           | or Septic                |                             |
|                |                |          |                 |               |        | Setbacks    |               |               | Capacity               |                                                                                          |                           |                          |                             |
| 2009/2011      | Low            | micro    | 64-32-06 Figure | Albers/       | 156    | 105         | 1996 Almonds  | Valk Road/S   | San Joaquin Sandy      | South - pasture and 3 residnces, One dairy,                                              | Graded to central         | Northeast corner         |                             |
|                |                |          | 3B              | Yosemite      |        |             | and 2007      | Yosemite Road | Loam, Moderately       | chicken farm; East - pasture, 3 residences                                               | drainage to the west      |                          | Brichetto Part.             |
|                |                |          |                 |               |        |             | Almonds       |               | Well Drained, 0.06     | and aggregate pit; North - pasture and<br>Orchard/Farmer's market; West - pasture,       | and southwest.            | one well                 | LP                          |
|                |                |          |                 |               |        |             |               |               | in/in capacity         | four residences, farmer's market and                                                     |                           |                          |                             |
|                |                |          |                 |               |        |             |               |               |                        | industrial park.                                                                         |                           |                          |                             |
| 2009/2011      | Remote         | micro    | 02-59-04 Figure | 26 Miles to   | 138.75 | 80          | 2005 Almonds  | 26 Mile Rd.   | Madera and Cometa      | South - pasture and 20 residences; East -                                                | Graded field with         | Northeast corner         | John Brichetto              |
|                |                |          | 3F              | Albers/       |        |             |               |               | Sandy Loam,            | 1 .                                                                                      |                           | of the property          |                             |
|                |                |          |                 | Yosemite      |        |             |               |               | Moderate to Well       | park; North - pasture and orchards; West -<br>pasture and numerous residences.           | toward local<br>drainage. | one well                 |                             |
|                |                |          |                 |               |        |             |               |               | Drained, 0.05 and 0.08 |                                                                                          | uraniage.                 |                          |                             |
|                |                |          |                 |               |        |             |               |               | in/in capacity         |                                                                                          |                           |                          |                             |
| 2010           | Low            | micro    | 06-91-01 & 06-  | Gilbert to 26 | 210    | 154         | Pasture,      | 7971 Gilbert  | San Joaquin Sandy      | South - approx. 15-20 houses, church,                                                    |                           |                          | 06-91-01: C & S             |
|                |                |          | 91-02           | Mile to       |        | (45 and     | plant Almonds | Road          | Loam, Moderately       | cheese factory, orchard; East - pasture, 2                                               | 0                         | 91-01, and one well near | Ranching, 06-91-<br>02: LTD |
|                |                |          | Figure 3D       | Albers/       |        | 109 acres   | 12/08         |               | Well Drained and       | orchards, three residences, dairy; North -<br>pasture, dairy, several residences; West - | southwest.                | southeast corner         |                             |
|                |                |          |                 | Yosemite      |        | respectivee |               |               | Peters Clay, 0.08 and  | pasture, dury, several residences, west                                                  |                           | of 06-91-02              | Cow Camp                    |
|                |                |          |                 |               |        | ly          |               |               | 0.14 in/in capacity    | 1                                                                                        |                           |                          | 1                           |
| 2009           | Low            | micro    | 64-31-28 Figure | Albers/       | 15.5   | 1           | Oats          | Albers Rd/S   | San Joaquin Sandy      | South - pasture and farmer's market; East -                                              | Drainage flat slight      | No wells or              | Elizabeth M                 |
|                |                |          | 3C              | Yosemite      |        |             |               | Yosemite Road | Loam, Moderately       | · · · · · · · · · · · · · · · · · · ·                                                    | 0                         | septic.                  | Brichetto Part.             |
|                |                |          |                 |               |        |             |               |               | Well Drained, 0.06     | dairy and one residence; West - pasture,<br>four residences and orchard.                 | southwest.                |                          | LP                          |
|                |                |          |                 |               |        |             |               |               | in/in capacity         | iour residences and ofcilard.                                                            |                           |                          |                             |

remote = refers to only late winter hydraulic connection to surface water

low = proximity is relatively close to stream with potential winter hydraulic connection. Buffer to be used.

micro = no flood irrigation, water applied at 1.5 inches of application per day through spray nozzles near the tree trunk

#### Table 5 - Proposed Long-term Application Areas ConAgra Oakdale

| Proposed Year  | Proximity/Risk      | Irrigat- | Parcel Number                                             | Hauling                                             | Acres  | Usable                                             | Crop                      | Location         | Soil Association and                                                                             | Area Use                                                                                                                                                                                                   | On SiteDrainage                                                                                                                    | On Site                                                | Registered                                                                                    |
|----------------|---------------------|----------|-----------------------------------------------------------|-----------------------------------------------------|--------|----------------------------------------------------|---------------------------|------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| of Application | to Surface<br>Water | ion      | and Figure                                                | Route                                               |        | Acres<br>After<br>Setbacks                         |                           |                  | Drainage Capacity                                                                                |                                                                                                                                                                                                            |                                                                                                                                    | Water Wells<br>or Septic                               | Co-Owner                                                                                      |
| 2010/2011      | Low                 | micro    | 63-05-04 Figure<br>3E                                     | Crane Road<br>to F Street to<br>Albers/<br>Yosemite | 244.7  | 180                                                | Mature<br>Walnuts         | 8700 N Crane Rd  | Hanford/Tujunga<br>Sandy Loam, Deep,<br>Well Drained, 0.14 to<br>0.07 in/in capacity             | South - housing development, city water<br>well, East - school, church, housing<br>development, orchards; North - Stanislaus<br>River; West - 62-04-02, orchards, numerous<br>residences, transition land. | Portion south of bluff<br>- rapid drainage<br>through sandy loam;<br>portion north of bluff<br>- drainage towards<br>bluff         | at ranch house.<br>City well near                      | Elizabeth M<br>Brichetto                                                                      |
| 2010           | Low                 | micro    | 02-12-63,<br>shown on<br>Figure 3F                        | 26 Miles to<br>Albers/<br>Yosemite                  | 372.26 | 328                                                | Almonds (2 to<br>6 years) | 12019 26 Mile Rd | Madera and Cometa<br>Sandy Loam,<br>Moderate to Well<br>Drained, 0.05 and 0.08<br>in/in capacity | South - 02-59-04; East - pasture, 4 residences<br>and mobile home park; North - pasture;<br>West - dairy, nursery, pasture and<br>numerous residences.                                                     | Fields drain towards<br>drainages running<br>through north and<br>south portions of the<br>property                                | Two wells - mid-<br>west and mid-<br>east of property. | John Brichetto                                                                                |
| 2010           | Low                 | micro    | 62-04-32, 62-04-<br>29, 62-04-02<br>shown on<br>Figure 3E | Crane Road<br>to F Street to<br>Albers/<br>Yosemite | 122.6  | 95<br>(23, 47 and<br>25 acres<br>respectivel<br>y) | 2000/2001<br>Walnuts      | Brady Road       | Hanford/Tujunga<br>Sandy Loam, Deep,<br>Well Drained, 0.14 to<br>0.07 in/in capacity             | South - residences, orchards; East - 63-05-04<br>North - Stanislaus river; West - orchards,<br>agriculture                                                                                                 | Rapid drainage<br>through sandy loam.                                                                                              | septic. Well to<br>SE (off-site)                       | 62-04-29: John<br>Brichetto, 62-04-<br>32: John<br>Brichetto, 62-04-<br>02: John<br>Brichetto |
| 2010           | Low                 | micro    | 63-04-30, 63-06-<br>01, shown on<br>Figure 3E             | Crane Road<br>to F Street to<br>Albers/<br>Yosemite |        | 3<br>(1 and 2<br>acres<br>respectivel<br>y)        | 1976 Almonds              | Walnut Street    | Hanford/Tujunga<br>Sandy Loam, Deep,<br>Well Drained, 0.14 to<br>0.07 in/in capacity             | South - housing development; East -<br>housing development; North - Stanislaus<br>river; West - 63-05-04                                                                                                   | Rapid drainage<br>through sandy loam.                                                                                              |                                                        | John Brichetto                                                                                |
| 2011           | Low                 | micro    | 64-31-29,<br>shown on<br>Figure 3B and<br>Figure 3C       | Albers/<br>Yosemite                                 | 81.05  | 50                                                 | Pasture, 1996<br>Almonds  | Albers Road      | San Joaquin Sandy<br>Loam, Moderately<br>Well Drained, 0.06<br>in/in capacity                    | South - 64-32-06; East - pasture; North - 64-<br>31-28; West - pasture, farmers market,<br>orchards, 3 to 6 residences                                                                                     | North part of field<br>drains toward<br>drainage running<br>south-southwest;<br>south portion drains<br>to the south-<br>southwest | No wells or<br>septic.                                 | John Brichetto                                                                                |

remote = refers to only late winter hydraulic connection to surface water

low = proximity is relatively close to stream with potential winter hydraulic connection. Buffer to be used.

micro = no flood irrigation, water applied at 1.5 inches of application per day through spray nozzles near the tree trunk

The referenced dominant soil associations noted in Table 5 are as follows: Hanford, Cometa, Tujunga, Snelling, Madera and San Joaquin sandy loams to loamy sands are depicted. These soils are considered in general deep, moderate to well drained or slow to moderate water movement. Hard pan is typically observed for the Madera and San Joaquin Soils. Water capacity ranges from 0.05 to 0.15 in/in. Refer to Section 5 for more details on the setting.

In preparation for this proposed effort, over ten background soil samples were collected on May 6, 2005 by John Brichetto and on June 30, 2005 by Pat Dunn of DE from the two sites referenced as the Kaufman Road and 26-mile road locations. The samples were collected by hand augering to a depth of one foot and compositing the 0-1 foot interval into a zip-lock bag. Soils were described in the field using the Unified Soil Classification System as follows: Parcel 02-59-04 – Sandy Clay, light brown, low plasticity, dry, visible organics; Parcels 63-28-11, 63-28-26, 64-31-40 and 63-25-15 – Sandy Silt, olive gray, trace organics, loose and dry.

The soils were transported immediately to A&L Analytical in Modesto, CA. Appendix B provides the sample results analyzed to date. The May and June 2005 soil sample results were available for this review. In addition, historical background sample information is provided for the ongoing annual efforts for ConAgra associated with the existing land application area and the abandonment of the Upond on site. Those sample results are also summarized herin. The APN maps for the referenced application areas are provided in Appendix C.

The results are provided as total values for the 2005 soil samples and also reflect a portion of the nutrients that are available to the plants. Total inorganic results for soils are as follows; pH ranged from 4.9 to 8.2, average 6.5; soluble salts (electric conductance) ranged from 0.2 to 0.7 dS/m or mmhos/cm, average 0.5 dS/m; total nitrogen as nitrate ranged from 1 to 37 ppm, average 10.7 ppm. The selected total metal results were detected as follows: arsenic ranged from nondetect to 2.1 and total chromium ranged from 5.9 to 37.3 ppm, average 15.9 ppm. The nutrients Boron and Zinc were found at levels averaging 13.6 and 13.9 ppm, respectively. Refer to Table 5.

For comparison purposes, the amendment and soils are suitable for plant growth per the direction of A&L Laboratories. The natural soil pH values are slightly acidic to basic which supports the potential lower risk of using lower pH water. For the metals boron and chromium, the natural soil levels are similar to the

concentrations observed in the pond mud. Additional comparisons will be made once the additional data is collected during the hauling process or if additional pre-haul sampling is determined to be necessary.

For the 2009 through 2011 growing season, the background soil quality assessment will be prior to and after application for each application area to be considered for application that next year. Sampling will be completed prior to and several weeks after application during the first year of use. The assessment for the next growing year will be detailed in the annual report. Refer to Section 6.

|                             | h                    |               |                        |                                    |       |       |                                                 |       | C         | onAgra                | a Oakdale                             |       |       |        |       |                       |      |         |         |
|-----------------------------|----------------------|---------------|------------------------|------------------------------------|-------|-------|-------------------------------------------------|-------|-----------|-----------------------|---------------------------------------|-------|-------|--------|-------|-----------------------|------|---------|---------|
|                             | BACKGROUND SAMPLE ID |               |                        |                                    |       |       |                                                 |       |           |                       |                                       |       |       |        |       |                       |      |         |         |
|                             |                      |               |                        |                                    |       |       |                                                 |       |           |                       | Annual<br>2005                        |       |       |        |       |                       |      | al 2008 |         |
|                             | _                    | ond           | Arment 2004 Bashaman I |                                    |       |       | 2005 (Bridesta) Besternen d                     |       |           | Sampling<br>(refer to |                                       |       |       |        |       | Sampling<br>(Refer to |      |         |         |
|                             | Backg<br>20          | 05            | Ann                    | Annual 2004 Background<br>Sampling |       |       | 2005 (Brichetto) Background<br>Sampling, May 05 |       |           | Annual<br>Report)     | 2005 DE Soil sampling 6/30/05 (0-1 ') |       |       |        |       | Annual<br>Report)     |      |         |         |
|                             |                      |               |                        |                                    |       |       |                                                 |       | 26<br>Ml  | 26<br>Ml              |                                       |       |       |        |       |                       |      |         |         |
| ANALYTICAL                  | TP-<br>05-03         | TP-<br>05-03- | BG-1                   | BG-1                               | BG-1  | BG-1  | Crane                                           | Brady | Rd<br>Blk | Rd<br>Blk             | BG 1                                  | 63-   | 63-   | 64-31- | 63-   | 02-                   | BG-2 | BG-2    |         |
| PARAMETERS                  | 2'                   | 12'           | 1'-2'                  | 2'-3'                              | 3'-4' | 4'-5' | Rd                                              | Rd N  | 5         | 6-7                   | 0-1'                                  | 28-11 | 28-26 | 40     | 25-15 | 59-04                 | 0-1' | 1-2'    | Average |
| pН                          | 7.3                  | 8.2           | 6.1                    | 6.6                                | 7     | 6.6   | 7.2                                             | 6.5   | 5.6       | 7.2                   | 4.9                                   | 5     | 6     | 4.8    | 7.5   | 5.4                   | 6.9  | 7.4     | 6.5     |
| CEC meq/100g                | 3.8                  | 2.4           | 14.3                   | 13.8                               | 13.9  | 12.2  | NA                                              | NA    | NA        | NA                    | 14.7                                  | 14.8  | 16.4  | 20.6   | 12.8  | 12.2                  | 16.9 | 20.2    | 13.5    |
| Nitrogen as Nitrate         |                      |               |                        |                                    |       |       |                                                 |       | 1.6       |                       | 21                                    |       |       |        |       |                       |      |         | 10 5    |
| ppm                         | 2                    | 4             | 14                     | 25                                 | 9     | 9     | 4                                               | 4     | 16        | 8                     | 21                                    | 2     | 6     | 26     | 4     | 37                    | 1    | 1       | 10.7    |
| Sulfur as Sulfate<br>ppm    | 21                   | 1             | NA                     | NA                                 | NA    | NA    | NA                                              | NA    | NA        | NA                    | NA                                    | 8     | 5     | 3      | 6     | 8                     | 123  | 112     | 31.9    |
| Total Arsenic ppm           | NA                   | NA            | NA                     | NA                                 | NA    | NA    | < 0.5                                           | < 0.5 | < 0.5     | < 0.5                 | NA                                    | 1.9   | 2.1   | 1.5    | 1.8   | 1.1                   | NA   | NA      | 1.7     |
| Total Chromium              |                      |               |                        |                                    |       |       |                                                 |       |           |                       |                                       |       |       |        |       |                       |      |         |         |
| ppm                         | NA                   | NA            | NA                     | NA                                 | NA    | NA    | 5.9                                             | 37.3  | 13.3      | 19.2                  | NA                                    | 12.6  | 13.3  | 15.5   | 13.6  | 12.4                  | NA   | NA      | 15.9    |
| Zinc Zn ppm<br>nutrient     | 3                    | 1.4           | 0.4                    | 0.4                                | 0.2   | 14.1  | 28.9                                            | 67.3  | 55        | 70                    | 0                                     | 0.5   | 1.3   | 0.9    | 3.4   | 1.8                   | 1.1  | 0.8     | 13.9    |
| Boron B ppm                 |                      |               |                        |                                    |       |       |                                                 |       |           |                       |                                       |       |       |        |       |                       |      |         |         |
| nutrient                    | 0.2                  | 0.1           | 0.2                    | 0.2                                | 0.7   | 0.2   | 60                                              | 83    | 52        | 46                    | 0.2                                   | 0.1   | 0.4   | 0.2    | 0.1   | 0.2                   | 0.11 | 0.14    | 13.6    |
| Chloride Cl-meq/L           | 0.3                  | 0.3           | 0.5                    | 1.2                                | 2.4   | 1.7   | NA                                              | NA    | NA        | NA                    | 0.3                                   | 0.1   | 0.3   | 0.1    | 0.8   | 0.1                   | 1.9  | 1.9     | 0.9     |
| EC dS/m or<br>mmhos/cm      | 0.6                  | 0.2           | 1                      | 1.4                                | 1     | 0.7   | 0.2                                             | 0.3   | 0.5       | 0.6                   | 0.8                                   | 0.1   | 0.2   | 0.5    | 0.3   | 0.5                   | 0.65 | 0.3     | 0.5     |
| Alkilinity CO <sub>3</sub>  |                      |               |                        |                                    |       |       |                                                 |       |           |                       |                                       |       |       |        |       |                       |      |         |         |
| meq/L                       | 0                    | 0             | 0                      | 0                                  | 0     | 0     | NA                                              | NA    | NA        | NA                    | 0                                     | 0     | 0     | 0      | 0     | 0                     | NA   | NA      | 0.0     |
| Alkilinity HCO <sub>3</sub> |                      |               |                        |                                    |       |       |                                                 |       |           |                       |                                       |       |       |        |       |                       |      |         |         |
| meq/L                       | 0.9                  | 1.2           | 1                      | 0.9                                | 1.1   | 1.2   | NA                                              | NA    | NA        | NA                    | 0.5                                   | 0.4   | 1.1   | 0.8    | 1.5   | 0.7                   | NA   | NA      | 0.9     |
| SAR                         | 4.7                  | 2.3           | 3.2                    | 3.1                                | 3.7   | 3.7   | NA                                              | NA    | NA        | NA                    | 0.6                                   | 0.8   | 0.6   | 0.3    | 1.3   | 0.5                   | NA   | NA      | 2.1     |
| TOC ppm                     | 1700                 | 1200          | 5900                   | 6700                               | 6200  | 5500  | NA                                              | NA    | NA        | NA                    | >.1                                   | 5900  | 8100  | 11600  | 6400  | 8700                  | 5300 | 4700    | 5992    |
| TKN ppm                     | 626                  | 350           | 773                    | 612                                | 544   | 473   | NA                                              | NA    | NA        | NA                    | 834                                   | 719   | 1096  | 1185   | 750   | 973                   | 191  | 87      | 658     |

Table 6 2004/2005/2008 Background Soil Analytical Results

ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal PlanDE Project No: 102-1525

### **Figure 3a Application Area Map – Kaufman Road** (Within City Limits – Removed)





| DATE: 10/15/2008   |
|--------------------|
| SCALE: 1":1200'    |
| PROJECT NO: 102-15 |
| DRAWN: MM          |
| CHECKED: PFD       |
| FIGURE: 3B         |

APPLICATION AREA MAP -VALK ROAD CONAGRA FOOD, INC STANISLAUS COUNTY, CA







| DATE: 10/15/2008          |
|---------------------------|
| SCALE: 1":1200'           |
| <b>PROJECT NO: 102-15</b> |
| DRAWN: MM                 |
| CHECKED: PFD              |
| FIGURE: 3D                |

APPLICATION AREA MAP-GILBERT ROAD CONAGRA FOOD, INC STANISLAUS COUNTY, CA





| DATE: 10/15/2008   |
|--------------------|
| SCALE: 1":1300'    |
| PROJECT NO: 102-15 |
| DRAWN: MM          |
| CHECKED: PFD       |
| FIGURE: 3E         |

APPLICATION AREA MAP -N CRANE AND BRADY ROAD CONAGRA FOOD, INC STANISLAUS COUNTY, CA


STANISLAUS COUNTY, CA

FIGURE: 3F

ENVIRONMENTAL, INC.

CHECKED: PFD

## 4.2 BEST MANAGEMENT PRACTICES

Best Management Practices (BMPs) refer to a set of operation methods employed to limit potential impacts to water quality. Activities related to mud as a soil amendment are directly related to the transportation, temporary storage (if necessary), application and incorporation of the referenced material. Brichetto Ranches will be retained to manage, control and keep records associated with the application of the soil amendment stated herein.

## Transportation of Aerated Pond Mud and Rinse Mud

The mud will be transported in covered water-tight top truck tank containers (side or rear dump) or water-tight roll-off bins. As referenced in Section 4, the target pH values prior to transport will range between 6 and 8 standard pH units preferred. Rinse mud is allowed at lower pH levels, ranging from 3.5 to 12 standard pH units.. BMPs will include keeping the capacity of the containers to less than 60% to avoid spillage during transfer. The bottom and side floors will be water tight. Baffles will be placed within the containers to reduce the movement of the load. Between loads water rinsing may be necessary to reduce odors. As referenced, fresh water or treatment may be needed for pH adjustment.

## Application of Aerated Pond Mud

Application shall be completed throughout the year weather and operation permitting. Primarily one application shall occur during the early to late spring and one should occur after crop harvest. Based on the available fields for application, we anticipate numerous application during a growing season based on agronomic rates.

On site temporary holding storage bins for direct application may be used. Stockpiles on plastic or within existing on site ponds may be generated for drying. Wastewater will drain to the treatment ponds. Steel open-topped, holding tanks may be used to hold mud prior to using a vacuum tank or manure spreader for application. Holding periods on the land application properties will be less than 72 hours. For the application of mud on land where oats will be grown, the direct transfer from the transport truck will typically occur. Oat, almond and walnuts fields may be disked prior to application. Application will include the spreading of mud at an average depth of less than two inches per application. To prevent over-saturation, different areas or discharge track will be ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal Plan June 2009 DE Project No: 102-15 **Revision 3** 32

used for each pass. The areas that have received rinse mud will be disked to a minimum of six inches in depth to incorporate mud into soil within 72 hours of application to prevent nuisance conditions in accordance with waiver provisions. The area will be redisked if odors are observed. Note other mitigation measures below.

One hundred foot setback distances from low lying drainage areas will be maintained during application. Inspection forms will be used to document the observations, type and amounts. Additional setbacks are shown on the figures.

The following potential nuisance conditions will be addressed in the following manner:

## Excessive Liquid and Moisture:

Excessive liquid and moisture accumulation will be addressed by the assessment of water content prior to shipping and field preparation efforts. A drying area will used on the ConAgra facility prior to hauling, if available or necessary. The grading of the site will be completed so that maximum adsorption will occur. Staging area and field preparation may consist of the application of dry manure or compost in a thin lift to maximize adsorption. Agronomic rates will be closely observed for these applications. Dry product will be added to reduce the percolation of the wet material.

### Excessive Noise:

Utilized equipment will be in good working condition to minimize excessive noise. In addition, the rural setting of the proposed application areas will reduce the number of noise receptors.

### Excessive Dust:

In order to reduce potential dust emissions from roadway and site use, a water truck with spray nozzles will be used as warranted. Road gravel, composed of 2-inch or greater size gravels, will be used. Speed reduction signs will be used as necessary. Tarp covers may be necessary during high winds.

### *Excessive Objectionable Odor:*

Haulers will cover loads from the ConAgra Facility to the application area. To reduce objectionable odors at the application fields, spreading and disking will be the primary mitigation measure. Earlier application or re-disking will be completed as needed. If odors persist, different staging and application area locations will be selected.

### Excessive Fly, Mosquito and/or Vector Nuisance:

Similar mitigation measures used for odors will be used to reduce flies, mosquito and vector concerns. Incorporation with spreading and disking within 48 to 72 hours will reduce the potential of nuisances and odors discussed above. If nuisances persist, changed locations will be strongly considered and moisture content will be modified with mixing.

### Severe and Inclement Weather:

If rain is forecasted, application of by-product will not take place. Storage areas that drain to the ConAgra Wastewater Treatment Facility will be used for staging purposes. Stored piles will be place on plastic and covered with plastic as necessary. A general goal of seven days of drying (insignificant rain events resulting in no saturation) will be used prior to by-product placement on fields.

### Loading Rates based on Aerated Pond Mud Results

The nitrogen loading, inorganic and organic loading rates are significantly below the required nutrient levels for oats, almonds and walnuts. The rinse mud detected metal constituents are within the range of the soil results as described above. In addition, the hydraulic loading and subsequent nutrient loading is extremely low and protective of ground water. The Western Fertilizer Handbook and recommendations from the project certified agronomist, Terry Prichard, were used for the following plant uptake or agronomic values for the following crops:

Recommended Total Nitrogen Application Rates: Oats: 160 lbs/acre/yr Young Almonds and Walnuts: 130 lbs/acre/yr Total nitrogen as N uptake for oats is 160 lbs/acre/year, and young almond and walnuts are 130 lbs/acre/yr. Total Nitrogen as N results for the aerated pond mud range from 0.12 lbs/ton to 6.4 lbs/ton with an average of 3.46 lbs/ton. For an application rate of 130 lbs/acre/year, the average Total Nitrogen as N concentration of 3.46 lbs/ton would allow 37.5 dry tons/acre/year of waste and 55.34 wet tons/acre/year of waste, given an average moisture of 32.2% by weight. Due to a lower relative loading rate for almonds/walnuts, total nitrogen as N limits the total application volume per year. For 80 acres of almond/walnut fields, approximately 4,400 tons or 480 loads (9 ton loads) could be applied per year without exceeding 130 lbs/acre/year of total nitrogen as N. This translates to approximately less than 4 inches of application per acre. Refer to Table 7 for a comparison of the suggested application rates to the observed concentrations in the aerated pond mud.

Available potassium uptake for oats, young almonds, and young walnuts is 60 lbs/acre/yr. Available potassium ranges from 0.76 to 1.96 dry lbs/ton with an average of 1.48 lbs/ton. Approximately 59.8 wet tons/acre/year of waste could be applied. Due to the higher total nitrogen as N uptake for Oats, potassium provides the limiting volume for application per year instead. Approximately 2,360 tons, or 260 loads (9 ton loads) could be applied per year without exceeding the 60 lbs/acre/yr limit for potassium. This translates to approximately less than 3 inches of application per acre. Refer to Table 7 for a comparison of the suggested application rates to the observed concentrations in the aerated pond mud.

Available phosphorus uptake for oats, young almonds, and young walnuts is 60 lbs/acre/yr. Available phosphorus ranges from non-detect to 0.24 dry lbs/ton with an average of 0.14 lbs/ton. Approximately 636 wet tons/acre/year of waste could be applied.

For the parameters copper, nickel, boron and zinc, the application rates would be less than 1 lb/acre/year or approximately 1 ppm to 6-inch depth of incorporation. The application rate of arsenic and chromium would be similar.

Total nitrogen and potassium are the limiting factors as it provides the lowest waste loading rate of the analyzed parameters. Land applying the waste at rates greater than 59.3 wet tons/acre/year of wet waste would exceed the plant uptake and potentially impact groundwater. For the proposed 2008 application acres of 120 acres, the application rate would be approximately 130 lbs/acre/year based on nitrogen loading rates to trees. This is a very conservative nitrogen

application rate since only ammonia nitrogen and nitrate nitrogen are available for plant uptake. Ammonia and nitrate nitrogen were analyzed at three orders of magnitude lower in concentration than total nitrogen, refer to Appendix A. For the 2008 season, the 120 acre parcels oats and almonds respectively would be needed for application.

### Application of Rinse Mud

Application of rinse mud will follow the rates outlined above and on Table 7. Specific information is as follows for historic data provided in Section 2.2 Rinse Mud Characteristics and until the rinse mud samples are collected in 2009. Rinse mud results indicate an application rate would be 130 lbs/acre/year for forage crops is achievable. This is a very conservative nitrogen application rate since only ammonia nitrogen and nitrate nitrogen are available for plant uptake. Ammonia and nitrate nitrogen were analyzed at three orders of magnitude lower in concentration than total nitrogen. For the parameters boron and zinc, the application rates for nitrogen would accumulate less than 1 lb/acre/year or approximately 1 ppm to 6-inch depth incorporation after disking. The application rate of arsenic and chromium would be similar.

## Pre and Post Application Soil Sampling and Mud Sampling

Section 5 provides the soil sampling details. Section 3 provides details of the mud sampling.

## Application Log and Record Keeping

A written log will be maintained documenting the number of loads and quantity of mud applied to each site. Documentation should include the daily pH of the rinse mud, application method used (vacuum truck or dump truck), inches applied and disking practice. The pH readings will be recorded at the plant prior to leaving the facility. The application areas will be detailed on a map. Refer to Appendix C for the daily application log form.

| Table 7                               |
|---------------------------------------|
| <b>Application Summary</b>            |
| Trees limited by N, Oats limited by K |
| ConAgra, Oakdale                      |

| i                                                   | 0                                                          |                             |                                                             |                |                |
|-----------------------------------------------------|------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|----------------|----------------|
|                                                     | Total N                                                    | Available<br>Phosphor<br>us | Available<br>Potassium                                      | DTPA<br>Copper | DTPA<br>Nickel |
| Walnuts/Almonds -                                   |                                                            | 60                          |                                                             | 1              |                |
| Maximum lbs/ac/yr                                   | 130 lbs/ac/year                                            | lbs/ac/yr                   | 60 lbs/ac/yr                                                | lb/ac/yr       | 1 lb/ac/yr     |
| Tons of Wet Waste<br>Allowable/ac/yr*               | 55.3                                                       | 636                         | 59.6                                                        | 449            | 407            |
| Tonnage/Loads for 80<br>acres of<br>Walnuts/Almonds | Approximately<br>4,400 tons, 480<br>loads (9 ton<br>loads) |                             |                                                             |                |                |
| Oats - Maximum                                      |                                                            | 60                          |                                                             | 1              |                |
| lbs/ac/yr                                           | 160 lbs/ac/year                                            | lbs/ac/yr                   | 60 lbs/ac/yr                                                | lb/ac/yr       | 1 lb/ac/yr     |
| Tons of Wet Waste<br>Allowable/ac/yr*               | 68.1                                                       | 636                         | 59.6                                                        | 449            | 407            |
| Tonnage/Load for 40<br>acres of Oats                |                                                            |                             | Approximate<br>ly 2,360 tons,<br>260 loads (9<br>ton loads) |                |                |
|                                                     |                                                            |                             |                                                             |                |                |

Based on an average moisture of 32.2%

Each year after the harvest season ends and post application sampling is completed, a summary report will be compiled and forwarded to ConAgra and the County. The report will contain specifics on the annual application under this program, refer to Section 6. The selection of specific areas to be applied during the next growing season will be detailed in that report.

## 5. APPLICATION AREA BACKGROUND AND SOIL SAMPLING PROTOCOL (PREAPPLICATON AND POST APPLICATION PROTOCOL)

DE understands that the following physical conditions exist that support the application of this soil amendment onto the ground. The sampling protocol will commence pre and post application. The post application will take place after the oat or tree crop is harvested.

## 5.1 CROP NUTRIENT UPTAKE SUMMARY

The success of a plant to uptake nutrients relates to water quality in that whatever nutrients are not taken up by the plant become available to ground water or surface water resulting in potential impacts. Plant uptake of nutrients relates to the following variables:

- 1. Plant Type Different plants have different abilities to uptake nutrients related to rooted depths. For the referenced property Application Area 1, 2008 growing season winter oats will be used. Refer to Figure 3a; this property is located south of the ConAgra plant. For the Area 2 26 mile road property (refer to Figure 3b), the crop is non-producing young almonds. The rooted depth maximum for winter oats is one foot with 80 percent of the root mass occurring within the first foot of depth. Two year old almonds have a rooted depth of approximately four feet.
- 2. Application Rates –The nitrogen loading described herein is well below the recommended agronomic rates of 160 and 130 lbs/acre/yr, respectively. Post application soil sampling activities will focus on areas that may receive the highest application. Future years the crop and rate of application will be closely evaluated.
- 3. Soil Type Soil type variation is significant across each ranch and is considered the most important factor in assessing nutrient migration through the subsurface, plant rooted depth and potential impact to ground water. Soil type is the most significant factor in determining the sample location rationale. We anticipate the highest residual concentrations to be present in the clay rich soils.
- 4. Topography and Proximity to Surface Water Areas Low lying topography and proximity to the ditches is the second most important factor related to sample location across the application area.

In summary, pre and post application soil samples representing worst case residual nutrient levels are clay rich soils located in low lying topographic areas. Details will be provided after each sampling event. At a minimum samples will be collected every ten acres. Composite samples may be collected to a depth of four feet depending on plant rooted depth and soils encountered.

## 5.2 PHYSIOGRAPHIC SETTING

The ConAgra Facility is located in southeast Oakdale, California. The topography in the reference application areas is generally flat along the southern areas with rolling hills dominating the application areas to the North.

## **Regional Geology**

The plant and application areas are located along the eastern margin of the San Joaquin River Basin. The geology is comprised of alluvial deposits of the ancestral Stanislaus River underlain by bedrock. The unconsolidated deposits comprise an estimated thickness from 50 to 1000 feet along this eastern margin Modesto Area. The regionally continuous clay member between the upper alluvial deposits has been encountered significantly in areas throughout the County and near the site. This clay member overlies the Mehrten Formation at depth. Typically at great depths are the bedrock formations believed to consist of the Ione, Valley Springs and Mehrten Formations.

## Area Soils and Geology

The Soil Survey, Oakdale Area, California indicates that the soils underlying the proposed 2008 application area are comprised of the Montpellier-Whitney, San Joaquin-Madera, Snelling, Hanford-Tujunga and Hopeton-Peters soil associations. The Montepellier-Tujunga and San Joaquin-Madera association is affiliated with hardpan soils on moderately old fans and terraces. The Snelling association is affiliated with deep moderately well drained, moderately permeable soils on moderately old fans and terraces. The Hanford-Tujunga association is affiliated with deep well drained soils of alluvial fans from the Stanislaus River. Hopeton-Peters association is affiliated with shallow to moderately deep, medium textured soils on lacustrine or mixed sediments. Hardpan material is anticipated 4 to 5 feet below the surface. Four primary soil types can be found across the South and North Area Ranches. The soil types are clay, clay loam, loam and sandy loam. As indicated above, soil types are

significant when assessing nutrient migration and the retention of potential contaminants.

The geology consists of the interbedded alluvial sands and clays of the ancestral Stanislaus River. Significant sand units have been found at surface at the plant site, and 40 feet to 60 feet below ground surface (bgs) at locations on the Brichetto Ranch.

## **Regional Hydrogeology**

The ConAgra Facility and the Land Application Area is located within the northwestern half of the Modesto sub basin of the San Joaquin River Basin as per Department of Water Resources (DWR) Bulletin 118. The Modesto sub basin lies between the Stanislaus River to the North and the Tuolumne River to the South. The 26 Mile Rd application area for 2008 and the future Gilbert Rd application area is located in the Eastern San Joaquin sub basin. Regional ground water flow is typically found within primary and secondary porosities within sandy alluvial deposits in the area. This primary ground water flow occurs within the sands of the Forebay Deposits, Riverbank and Modesto Formations at depth. Ground water is encountered in unconfined, semi-confined and confined conditions. The Mehrten Formation, comprised of permeable sands and gravels interbedded with clays lies at depths greater than 140 feet. Ground water flow is to the southwest toward the San Joaquin River Valley. Water levels have declined historically in the area.

Regional ground water is considered a calcium-sodium bicarbonate water type with TDS values ranging from 60 to over 8,000 ppm. In the basin elevated levels of chloride, boron, nitrate, iron and manganese are known to exist.

### Specific Hydrogeology

Based on information from the 17 monitoring wells on the ConAgra Plant and the land application monitoring wells, ground water is encountered at depths of approximately 70 feet below ground surface. Monitoring wells are screened within permeable sands and gravel. Typically ground water flows to the south and southwest in the area depending on the proximity to streams and creeks.

For this application project the mud application on Kaufman Road, can be evaluated through existing ground water monitoring wells. The monitoring wells MW-1 and MW-6 on the agricultural operations area at the ConAgra Plant are upgradient of the referenced parcel 63-28-26 and 63-28-11. The monitoring well LAMW-9 is directly downgradient.

No monitoring wells are in proximity to the other referenced mud application areas. Ground water depth varies on the order of 20 feet.

## 5.3 SOIL SAMPLING RATIONALE AND APPROACH

The referenced fields used for land application have been selected based on the distance from surface water features, soil and plant type. Figures 1 and 3a through 3f depict areas of application. Table 4 and the figures also depict the application area and soil types. The soil sample location rationale is as follows:

- 1. Soil Types The soil types are specific to each referenced area. Specific site sampling will be used to refine the generalized soil type.
- 2. Topographic Location As indicated above, application will take place where possible on the highest topographic areas. The low lying defined-ditch discharge areas will be avoided and setback will be used as a best management practice.
- 3. Sample Depth Composite soils at a minimum will be collected from 0-1 feet, 1-2 feet below surface grade. Additional depth discrete sampling will be done based on soil and plant rooted depth. Soil descriptions will be used to identify the vertical profile within the soil type groups. Each soil type then will have potentially several depth discrete samples are to be analyzed. Plant rooted depth and the anticipated hardpan layer may limit the soil depth.
- 4. Number of Soil Samples Three composite samples per field (one pound of soil per sample) of soil samples to be analyzed at the end of the growing season; depth discrete composite samples. Individual samples (number to be determined) may be collected below the root zone depth and two other samples to be analyzed pending field observations per field. A depiction of the soil types and field locations are provided on the Figures and Table 5. The sample locations will be explored to maximum depth of two feet depending on the location of hard pan soils or refusal conditions. Soils will be investigated using hand auger tools. The list of analytical parameters for testing are shown on Table 8.
- 5. Plant Tissue Samples Ten to Twenty plant tissue samples will be collected from each field making one composite for laboratory analysis.

Plant tissue composites will be analyzed for moisture, TKN, total nitrogen, sodium, chloride, potassium, calcium, magnesium and phosphorus.

The soil type, color and physical character of the soil will be logged by a geologist or soil scientist under the direction of a California registered geologist or engineer. Soil staining will be closely observed. Soil samples will be collected for individual archive samples and depth discrete composite samples. As referenced, the sample depth will extend to the plant rooting depth as necessary. Hard pan conditions can be found from two to five feet. The soil composite methodology and analytical procedures will follow the required MRP monitoring program for soils. Details are provided throughout this plan and on Table 7; however, if soil sampling requires a change, the number of samples shown as clay or clay loam or sandy loam may change.

## **Equipment Decontamination Procedures**

The hand auger and stainless-steel sampling equipment will be cleaned using a three step process including a prewash tap water rinse, an Alconox (non-phosphate soap) and distilled water rinse. Cleaning will take place between each selected sampling locations.

### Soil Sampling and Composite Protocol

During excavation, a geologist or engineer will portion the sample for logging and chemical tests. Soil samples for logging will be separated for visual observation and geologic logging. The unified soil classification system (USCS) will be used to describe soils. Color charts will be used to identify color changes in respective soil type. Soil staining will be described thoroughly.

As referenced, soil samples for chemical analysis will be typically collected for depth discrete composite samples from the upper several feet related to application rate, soil type and plant rooted depth. A cleaned stainless-steel sampling device will be used to collect and place soil samples in a stainless-steel sampling bowl for mixing of the soil type. At each sample location and per depth, 2 ounces (oz.) of soil volume will be placed in depth discrete stainlesssteel bowls for mixing of each composite sample for each soil type.

A thoroughly mixed soil sample from the depth composite will be placed in the referenced sample bottles as indicated by the laboratory. The proposed analytical parameters soil types and depth discrete samples to be analyzed in the lab are depicted on Table 8. The required sample size for analytical laboratory analysis of the analytes listed is approximately 32 oz of soil. If obvious signs of ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal Plan June 2009 DE Project No: 102-15 42 Revision 3

high nutrient discoloration are observed soil samples will be selected for laboratory analysis. Samples selected for laboratory analysis will be placed into sample containers in the field.

Laboratory Analysis - It is anticipated that the following parameters will be analyzed, refer to Table 8: Cation Exchange Capacity, Moisture Content, Total Organic Carbon, Carbonate, pH, Soluble Salts-EC, TDS, Chloride, Calcium, Magnesium, Sodium, Sodium Adsorption Ratio (SAR) Kjeldahl Nitrogen, Nitrate, Total Nitrogen, Ammonium Nitrogen Available Phosphorus, Extractable Potassium and DTPA Zinc, Manganese, Iron; and additional CAM metals for Aerated Pond Muds only. Holding times will be observed closely for these analyses.

## Table 8 **By-Product and Soil Analytical Parameters** ConAgra, Oakdale

| Sample Nur                  | nber                  |
|-----------------------------|-----------------------|
| Soil Classific              |                       |
| Soil Textu                  |                       |
| Soil Colo                   |                       |
| Cation Exchange             |                       |
| Exchange Sodiur             |                       |
| Moisture Co                 |                       |
| Total Organic               | Carbon                |
| Total Nitrogen ar           |                       |
| Carbonat                    |                       |
|                             | pH and Buffer pH      |
|                             | Soluble Salts – EC    |
|                             | TDS and FDS           |
|                             | Chloride              |
| Saturation Paste Extract    | Calcium               |
|                             | Magnesium             |
|                             | Sodium                |
|                             | Sodium Absorption     |
|                             | Ratio (SAR)           |
|                             | Kjeldahl Nitrogen     |
| Sediment Nutrients          | Ammonium Nitrogen     |
| Jeannent Nathents           | Available Phosphorus  |
|                             | Extractable Potassium |
| Sediment MicroNutrients –   | Boron, Zinc           |
| Totals and DTPA Extractable | Manganese             |
| Method. The Additional CAM  | Iron, Chromium,       |
| 17 Metals for Aerated Muds  | Copper, Arsenic, etc. |
| Only                        |                       |

ConAgra Foods, Oakdale - Aerated Pond and Rinse Mud Disposal Plan DE Project No: 102-15 44

## 6. REPORTING

As referenced in Section 4, the outline of this work plan document will be used to report completed elements of this rinse mud application and sampling effort. The findings will be included in a separate monitoring report submitted monthly, as necessary, the first year of operation and annually thereafter. The field form in Appendix C and others forms deemed necessary will be used to assist in tracking the field and reporting elements. Annual reports will be submitted to the County. Each annual report will summarize the application for the previous year and provide updates for the rates of application and sampling protocol established herein.

As referenced, this document will also be used to identify application areas to be utilized for each of the annual growing seasons. Table 5 provides an outline of the proposed scheduled use of the proposed land application sites. Table 7 provides the application rates.

## 7. PROPOSED TIME SCHEDULE FOR WORK

| SCHEDULE ITEM                          | TARGET COMPLETION DATE |
|----------------------------------------|------------------------|
| Management and Sampling Plan Submitted | 4/3/09                 |
| Stanislaus County Concurrence          | 6/30/09                |
| Waste Excavation and Soil Sampling     | August, September, and |
|                                        | October                |
| First Monthly Report of Findings       | 7/30/10                |
| First Annual Report                    | 4/30/10                |

This schedule depends on approval process and CEQA determination.

### **APPENDIX A**

### LABORATORY ANALYTICAL RESULTS OF 2007 AERATED MUD SAMPLING AND RINSE MUD SAMPLING EFFORTS

# argon laboratories

10 October 2007

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

RE: ConAgra Aerated Pond Project Data

Enclosed are the results for sample(s) received on 09/28/07 16:00 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Lab Manager

2905 Railroad Avenue, Ceres, CA 95307 • Phone (209) 581-9280 • Fax (209) 581-9282

| Chain of Custody                     | X           |               |         | 1             |        |                      |              |                            |     |                 |                           |               |                    | ļ                          |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|--------------------------------------|-------------|---------------|---------|---------------|--------|----------------------|--------------|----------------------------|-----|-----------------|---------------------------|---------------|--------------------|----------------------------|-------------------------------------|------------------|-------------|--------|------------|------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Project No.                          |             | Project Name: | Narr    |               | e)     | , 0,                 |              |                            |     |                 | $\mathbf{P}_{\mathbf{a}}$ | Parameters    | ters               |                            |                                     | · · ]            |             | Page 1 | ч          |            |                                          | Report To                                                                                           |
| 11-701                               |             | Conly         | Ę       |               | Ľ.     | Adriated Powd        |              |                            |     | A               |                           |               | <b>£</b> ⊼,<br>Zn, | TKN                        | Avai<br>Bray                        | Ar               |             |        |            |            | Te.                                      | Quine v                                                                                             |
| Sampler (Signature)                  | -           | (Printl Fr    | /       | ou.           | Fourie |                      |              |                            |     |                 |                           | Soil Sail     | Mn, Fe (J          |                            | ilable P (I<br>1, Olsen             | senic (HC        |             |        |            |            | EVAL<br>EVAL                             | F D ULLI<br>ENVIRONMENTAL INC                                                                       |
| C Sample<br>Identification<br>Number | Date        | Time          | Water   | Soil          | Other  | Sampling<br>Location | f Containers | Moisture<br>hange Capacity | FOC | arth Carbonates | Buffer pH                 | inity Package | DTPA extractable   | as Nitrogen, NH4<br>trogen | HCO3 extractable,<br>and 1N NH4OAc) | CO3 extractable) | Remarks     |        |            |            | 5060 Rc<br>El Dora<br>916-941<br>916-941 | 5060 Robert J. Matthews, # 2<br>El Dorado Hills, Ca 95762<br>916-941-3850 Phone<br>916-941-3860 Fax |
| Under OIZ                            | 9/27/7      |               |         | ×             |        | ,                    | ×<br>-       | 5                          | X   | X               | ×                         | $\times$      | $\mathbf{x}$       | ×                          | ×                                   | X                | *Run        | CAM    | 1 1        | F metals & | +-0                                      |                                                                                                     |
| :011                                 | 4/52/6      |               | ·       | ×             |        |                      | ×<br>-       |                            | X   | X               | $\frac{1}{2}$             | ×             | X                  | X                          | X                                   | 1                | report      | ľ,     | Totals and | and        |                                          |                                                                                                     |
| 14                                   | SAFA        |               |         | ${}^{\times}$ |        |                      | × I          |                            | X   | X.              | $\times$                  | X             | ×                  | X                          | $\times$                            | X                | ∀d⊥, đ      |        | I-UL       | EXDMEDIANE |                                          | Invoice To:                                                                                         |
| 144 COD                              | 4/21/6      |               |         | ${}^{\star}$  |        |                      | ΊX           | XV                         | X   | $\sim$          | X                         | $\times$      | ×                  | X                          | $\boldsymbol{\lambda}$              | X                | method.     | 5      |            |            |                                          | ConAgra Foods                                                                                       |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            | <u>5</u>                                 | 554 S Yosemite                                                                                      |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            | Oa                                       | Oakdale, CA 95361                                                                                   |
| -                                    |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          | Copy To:                                                                                            |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            | -                                   |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            | -                                   |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              | -                          |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          | Dunn Environmental                                                                                  |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            | -   |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
|                                      |             |               |         |               |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            |            |                                          |                                                                                                     |
| 0                                    |             |               |         |               |        | `                    |              | ,,                         |     |                 | '                         |               |                    |                            | <b>`</b>                            |                  |             |        |            | Ţ          |                                          |                                                                                                     |
| Rokthemistred Br.                    | (Signature) |               | Date    | Date/Time     | 91.    | 9/27/07              | 19:19        | 4                          |     |                 | Rece                      | Received By   | . }                | -67                        | al or                               | 1                | (Signature) | Heliss | い          | condition  | Date/Time                                | 767 16:55                                                                                           |
| 1 1. Facence                         |             | (Print)       | Con Con | Company       | Дини   | NN ENVivormente      | MAN          | ner                        | ta) | <b>_</b> .      | •                         | Ś             | Li                 | )                          | Anily                               | -4               | E Ju        | Enc.   |            | )<br>L     | (Print) / 10 Ack                         |                                                                                                     |
| -                                    | (Signature) |               | Diffe   | Date/Time     |        |                      |              |                            |     |                 | Rece                      | Received By:  |                    |                            | ľ.                                  | 5.               | (Signature) |        |            |            | Date/Time                                |                                                                                                     |
|                                      |             | (Print)       | Con     | Company       |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            | d)         | Company<br>(Print)                       |                                                                                                     |
| Relinquished By. (                   | (Signature) |               | Date    | Date/Time     |        |                      |              |                            |     |                 | Rece                      | Received By:  |                    |                            |                                     |                  | (Signature) |        |            |            | Date/Time                                |                                                                                                     |
|                                      |             | (Print)       | Com     | Company       |        |                      |              |                            |     |                 |                           |               |                    |                            |                                     |                  |             |        |            | a) ,       | Company<br>(Print)                       |                                                                                                     |
|                                      |             |               | ŀ       |               |        |                      |              |                            |     |                 |                           | ,             | C                  |                            |                                     |                  |             |        |            | ,          |                                          |                                                                                                     |

Chain of Custody

## argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

#### Project Number: [none] Project Name: ConAgra Aerated Pond Project Manager: -----

Work Order No.: H709095

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| Way 012   | H709095-01    | Soil   | 09/27/07 08:00 | 09/28/07 16:00 |
| Way 011   | H709095-02    | Soil   | 09/27/07 08:00 | 09/28/07 16:00 |
| Way 009   | H709095-03    | Soil   | 09/27/07 08:00 | 09/28/07 16:00 |
| Way 005   | H709095-04    | Soil   | 09/27/07 08:00 | 09/28/07 16:00 |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## @130 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: [none]             | and him with    |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H709095         |

|                           |                          |                    |           |          |           |        | •                |
|---------------------------|--------------------------|--------------------|-----------|----------|-----------|--------|------------------|
| Analyte                   | Result                   | Reporting<br>Limit | Units     | Dilution | Analyzed  | Method | Notes            |
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | 00       |           |        | е <sup>1</sup> . |
| Total Alkalinity          | 320                      | 10                 | mg/kg     | 1        | 06-Oct-07 | SM2320 |                  |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      |           |        |                  |
| Total Alkalinity          | 360                      |                    | mg/kg     | 1        | 06-Oct-07 | SM2320 |                  |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      |           |        |                  |
| Total Alkalinity          | 200                      | 10                 | mg/kg     | 1        | 06-Oct-07 | SM2320 |                  |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      |           |        |                  |
| Total Alkalinity          | 500                      | 10                 | mg/kg     | 1        | 06-Oct-07 | SM2320 |                  |
|                           |                          |                    |           |          |           |        |                  |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

#### argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. Project Number: [none] 554 S. Yosemite Ave. Project Name: ConAgra Aerated Pond Oakdale, CA 95361 Project Manager: -----



| Analyte                   | Resu                   | Reporting<br>Limit |             | Dilution     | Analyzed      | Method    | Note |
|---------------------------|------------------------|--------------------|-------------|--------------|---------------|-----------|------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08: | 0 Received: 28     | -Sep-07 16: | 00           |               | 11 - j    |      |
| Ammonia as N              | NI                     | 1.0                | mg/kg       | 1            | 10-Oct-07     | EPA 350.1 |      |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08: | 0 Received: 28     | -Sep-07 16: | 00           |               |           |      |
| Ammonia as N              | NI                     | 1.0                | mg/kg       | 1            | 10-Oct-07     | EPA 350,1 |      |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08: | 0 Received: 28     | -Sep-07 16: | 00           | 1             |           |      |
| Ammonia as N              | NI                     | 1.0                | mg/kg       | 1            | <br>10-Oct-07 | EPA 350.1 |      |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08: | 0 Received: 28     | -Sep-07 16: | D <b>O</b> V | , *           |           |      |
| Ammonia as N              | NI                     | 1,0                | mg/kg       | 1            | 10-Oct-07     | EPA 350.1 |      |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Work Order No.:

H709095

## @13501 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: [none]             |                 |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H709095         |

#### Anions by Ion Chromatography - EPA Method 300.0

| Analyte                   | Result                   | Reporting<br>Limit | Units      | Dilution |   | Analyzed  | Method    | Notes |
|---------------------------|--------------------------|--------------------|------------|----------|---|-----------|-----------|-------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | :00      |   |           |           |       |
| Nitrate as N              | ND                       | 2.0                | mg/kg      | 1        |   | 04-Oct-07 | EPA 300.0 |       |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |   |           |           |       |
| Nitrate as N              | ND                       | 2.0                | mg/kg      | -1       |   | 04-Oct-07 | EPA 300.0 |       |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       | 1 |           | 1         |       |
| Nitrate as N              | ND                       | 2,0                | mg/kg      | 1        |   | 04-Oct-07 | EPA 300.0 |       |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |   |           | · .       |       |
| Nitrate as N              | ND                       | 2.0                | mg/kg      | 1 ·      |   | 04-Oct-07 | EPA 300.0 |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

I

A

## argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

#### Arsenic, HCO3 Extractable

| Analyte                   | Result                   | Reporting<br>Limit Units | Dilution |      | Analyzed  | Method   |                    | Notes |
|---------------------------|--------------------------|--------------------------|----------|------|-----------|----------|--------------------|-------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:  | 00       |      |           |          |                    |       |
| Arsenic                   | . ND                     | 1.0 mg/kg                | 1        |      | 07-Oct-07 | EPA 6020 | $d \in \mathbb{N}$ |       |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:  | 00       |      | • * • •   |          | . •                |       |
| Arsenic                   | ND                       | 1.0 mg/kg                | 1        |      | 07-Oct-07 | EPA 6020 |                    |       |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:  | 00 ·     | <br> |           |          |                    |       |
| Arsenic                   | ND                       | 1.0 mg/kg                | 1        |      | 07-Oct-07 | EPA 6020 |                    |       |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:  | 00       |      |           |          |                    |       |
| Arsenic                   | . ND                     | 1.0 mg/kg                | . 1      |      | 07-Oct-07 | EPA 6020 |                    | • . • |
|                           |                          |                          |          |      |           |          |                    |       |

Approved By Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

# الكَرْنَانِ العُلْمَاتِ العُلْ

| argon laboratories                         | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | \ \ \           |
|--------------------------------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.<br>554 S. Yosemite Ave. | Project Number: [none]<br>Project Name: ConAgra Aerated Pond       | Work Order No.: |
| Oakdale, CA 95361                          | Project Manager:                                                   | H709095         |
|                                            | Cation Exchange Capacity                                           |                 |

| Analyte                   | Result                   | Reporting<br>Limit Units  | Dilution | Analyzed  | Method | Notes |
|---------------------------|--------------------------|---------------------------|----------|-----------|--------|-------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        |           |        |       |
| Cation Exchange Capacity  | 2,4                      | 2,0 meq/100 g             | 1        | 09-Oct-07 |        |       |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | ) .      |           |        |       |
| Cation Exchange Capacity  | 3.3                      | 2.0 meq/100 g             | - 1      | 09-Oct-07 |        |       |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        |           | 1      |       |
| Cation Exchange Capacity  | 4.2                      | 2.0 meq/100 g             | 1        | 09-Oct-07 |        |       |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        | <br>· 1   |        |       |
| Cation Exchange Capacity  | 4.3                      | 2.0 meq/100 g             | · 1      | 09-Oct-07 |        |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

# @F30 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.<br>554 S. Yosemite Ave. | Project Number: [none]<br>Project Name: ConAgra Aerated Pond | Work Order No.: |
|--------------------------------------------|--------------------------------------------------------------|-----------------|
| Oakdale, CA 95361                          | Project Manager:                                             | H709095         |
|                                            | DTPA Extractable Metals                                      |                 |

| Analyte                                                           | Result                             | Reporting<br>Limit              | Units               | Dilution    |                                          | Analyzed              | Method               | Note |
|-------------------------------------------------------------------|------------------------------------|---------------------------------|---------------------|-------------|------------------------------------------|-----------------------|----------------------|------|
| Way 012 (H709095-01) Soil                                         |                                    |                                 |                     |             |                                          |                       |                      |      |
|                                                                   | ND                                 | 2.0                             |                     | 1           |                                          | 07-Oct-07             | EPA 6020A            |      |
| Antimony                                                          | ND                                 | 2.0                             | mg/kg               | 1           |                                          | "                     | LIA UUZUA            |      |
| Arsenic                                                           | ND                                 | 5.0                             | n                   | ŋ           |                                          | u                     | н                    |      |
| Barium                                                            |                                    |                                 | н                   | D           |                                          | u                     | Ir                   |      |
| Beryllium                                                         | ND                                 | 1.0                             |                     | D           |                                          | ш                     | и                    |      |
| Cadmium                                                           | ND                                 | 1.0                             | U                   | 0           |                                          | u                     | н                    |      |
| Chromium                                                          | ND                                 | 1.0                             | U                   | n           | ÷ .                                      | u                     |                      |      |
| Cobalt                                                            | ND                                 | 1.0                             |                     |             |                                          |                       |                      |      |
| Copper                                                            | ND                                 | 2.0                             |                     |             |                                          | u                     |                      |      |
| Iron                                                              | 48                                 | 20                              |                     |             |                                          | u u                   | ,.<br>               |      |
| Lead                                                              | ND                                 | 1.0                             | н.                  | D           |                                          |                       | "                    |      |
| Manganese                                                         | 22                                 | 20                              | п                   | D           |                                          |                       | "                    |      |
| Mercury                                                           | ND                                 | 0.10                            | U                   | н.,         |                                          | u                     |                      |      |
| Molybdenum                                                        | ND                                 | 1.0                             | u                   | U           |                                          | a                     | "                    |      |
| Nickel                                                            | ND                                 | 1.0                             | u                   | ņ           |                                          | a                     | "                    |      |
| Selenium                                                          | ND                                 | 1.0                             | u                   | ÷ н         |                                          | и                     | и                    |      |
| Silver                                                            | ND                                 | 1.0                             | u                   | IJ          |                                          | н                     | и                    |      |
| Thallium                                                          | ND                                 | 1.0                             | u                   | n           |                                          | U                     | u .                  | . '  |
| Vanadium                                                          | ND                                 | 1.0                             | a                   | п           |                                          | u                     | "                    | 1.1  |
| Zinc                                                              | ND                                 | 5.0                             | a                   | "           |                                          | a                     | "                    |      |
| Way 011 (H709095-02) Soil                                         | Sampled: 27-Sep-07 08:00           | Received: 28-                   | Sep-07 16           | :00         | · · · ·                                  | $\{x_i\}_{i=1}^{n-1}$ |                      |      |
| Antimony                                                          | ND                                 | 2.0                             | mg/kg               | i           |                                          | 07-Oct-07             | EPA 6020A            |      |
| Arsenic                                                           | ND                                 | 1.0                             | n                   | · u         |                                          | u                     | и                    |      |
| Barium                                                            | ND                                 | 5.0                             | п                   | U           |                                          | u                     | и                    |      |
| Beryllium                                                         | ND                                 | 1,0                             | 11                  | u j         |                                          |                       | It                   |      |
| Cadmium                                                           | ND                                 | 1,0                             | 11                  | a           |                                          | и                     | и                    |      |
| Chromium                                                          | ND                                 | 1.0                             | 41                  | a           | . •                                      | u                     | н                    |      |
| Cobalt                                                            | ND                                 | 1.0                             | ŧ                   | п           |                                          | u                     | ц                    |      |
|                                                                   | ND                                 | 2.0                             | 11                  | u           |                                          | u                     | 14                   |      |
| Copper                                                            | 220                                | 2.0                             | u                   | u           |                                          | u                     | 14                   |      |
| Iron                                                              | 3.2                                | 1,0                             |                     | u           |                                          | u                     | 14                   |      |
| Lead                                                              | J.Z<br>ND                          | 20                              | Ц                   | u           |                                          | u                     | ır                   |      |
| A                                                                 | ND                                 |                                 | ц                   | u<br>0      |                                          | a                     | IF                   |      |
| •                                                                 |                                    |                                 |                     |             |                                          | u                     | н                    |      |
| Mercury                                                           | ND                                 | 0.10                            | 1 <sup>1</sup>      |             |                                          |                       |                      |      |
| Manganese<br>Mercury<br>Molybdenum                                | ND<br>ND                           | 1.0                             | า                   | u<br>1      |                                          |                       |                      |      |
| Mercury<br>Molybdenum<br>Nickel                                   | ND<br>ND<br>. ND                   | 1.0<br>1.0                      | М                   | ч           |                                          | u                     | R                    |      |
| Mercury<br>Molybdenum<br>Nickel<br>Selenium                       | ND<br>ND<br>. ND<br>ND             | 1.0<br>1.0<br>1.0               | N                   | u<br>a      |                                          | u                     | R                    |      |
| Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Silver             | ND<br>ND<br>. ND<br>ND<br>ND       | 1.0<br>1.0<br>1.0<br>1.0        | 11<br>11<br>11      | u<br>u<br>u |                                          | u<br>u                | R<br>14<br>14        |      |
| Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Silver<br>Thallium | ND<br>ND<br>. ND<br>ND<br>ND<br>ND | 1.0<br>1.0<br>1.0<br>1.0<br>1.0 | N<br>11<br>11<br>11 | á<br>a<br>n | 4                                        | u<br>u<br>u           | R<br>N<br>R          |      |
| Mercury<br>Molybdenum                                             | ND<br>ND<br>. ND<br>ND<br>ND       | 1.0<br>1.0<br>1.0<br>1.0        | 11<br>11<br>11      | u<br>u<br>u | н<br>Население<br>Население<br>Население | u<br>u                | 11<br>11<br>11<br>11 |      |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

k

A

## @175501 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | A               |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | sul in sulli    |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095         |
|                      | DTPA Extractable Metals                                            |                 |

| Analyte                   | Result                   | Reporting<br>Limit | Units      | Dilution |   | Analyzed  | Method    | Notes |
|---------------------------|--------------------------|--------------------|------------|----------|---|-----------|-----------|-------|
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16  | :00      |   |           |           |       |
| Antimony                  | ND                       | 2.0                | mg/kg      | .1       |   | 07-Oct-07 | EPA 6020A | ···   |
| Arsenic                   | ND                       | 1.0                | н (        | ,u       |   | U         | D         |       |
| Barium                    | ND                       | 5.0                | a          | . 0      |   | п         | U         |       |
| Beryllium                 | ND                       | 1.0                | u          | It .     |   | U         |           |       |
| Cadmium                   | ND                       | 1.0                | u          | н        |   | D         | U         |       |
| Chromium                  | ND                       | 1.0                | н          | 1F       |   | H.        | n         |       |
| Cobalt                    | ND                       | 1.0                | н          | и        |   | 17        | n         |       |
| Copper                    | ND                       | 2.0                | U          | I        |   | 11        | 11        |       |
| Iron                      | 330                      | 20                 |            | I        |   | H         |           |       |
| Lead                      | 3.1                      | 1.0                | D          | μ        |   | н         |           |       |
| Manganese                 | ND                       | 20                 | Ð          | н        |   | ц         | 17        |       |
| Mercury                   | ND                       | 0.10               | υ          | n        |   | И         | P         |       |
| Molybdenum                | ND                       | 1.0                | υ          | ¥I.,     |   | И         | 11        |       |
| Nickel                    | 1.6                      | 1.0                | n          | 11       |   | н         | P         | •     |
| Selenium                  | ND                       | 1.0                |            | 71       |   | п         | н         |       |
| Silver                    | ND                       | 1,0                |            | ti       |   | 11        | н         |       |
| Thallium                  | ND                       | 1.0                | 14         | u        |   | 11        | н         |       |
| Vanadium                  | 1.3                      | 1.0                |            | u        |   | ti        | н         |       |
| Zine                      | 5.6                      | 5.0                | 14         | u        |   | ti        |           |       |
| Way 005 (H709095-04) Soil |                          |                    | Fan 07 16  | .00      |   | · .       |           |       |
|                           |                          |                    |            |          |   | 07.0 4.07 | ED4 (0204 |       |
| Antimony                  | ND                       | 2.0                | mg/kg<br>" | 1        |   | 07-Oct-07 | EPA 6020A |       |
| Arsenic                   | ND                       | 1.0                |            |          |   | u .       | 71        |       |
| Barium                    | ND                       | 5.0                |            |          |   | u         |           |       |
| Beryllium                 | ND                       | 1.0                | ".         | 0        |   |           |           |       |
| Cadmium                   | ND                       | 1.0                | u<br>U     | n        |   |           | *1        |       |
| Chromium                  | ND                       | 1.0                | u<br>u     | "        |   |           | 11        |       |
| Cobalt                    | ND                       | 1.0                |            |          |   | U         | n         |       |
| Copper                    | ND                       | 2.0                | u          | 19       |   | · u       |           |       |
| Iron                      | 290                      | 20                 |            |          |   |           |           |       |
| Lead                      | 2,3                      | 1.0                | 0          | lt.      |   | "<br>"    |           |       |
| Manganese                 | ND                       | 20                 |            |          |   |           |           | 1. A. |
| Mercury                   | ND                       | 0.10               | н          | и        |   | n         |           |       |
| Molybdenum                | ND                       | 1.0                | U          |          |   |           | 0         |       |
| Nickel                    | ND                       | 1,0                | U          | u<br>    |   | "         |           |       |
| Selenium                  | ND                       | 1.0                | 0          | н        |   | 11        | u<br>     |       |
| Silver                    | ND                       | 1.0                | D          | . 11     |   | U         | u         |       |
|                           | ND                       | 1.0                | н          | \$1      |   | n         |           |       |
| Thallium                  |                          |                    |            |          |   |           |           |       |
| Thallium<br>Vanadium      | 1.0<br>ND                | 1,0<br>5,0         | н          | a<br>a   | · | 19        |           |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## @F301 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratorie    | <b>S</b> 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | A A             |  |  |  |  |
|----------------------|-----------------------------------------------------------------------------|-----------------|--|--|--|--|
| ConAgra Foods Inc.   | Project Number: [none]                                                      | - Miximum -     |  |  |  |  |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                          | Work Order No.: |  |  |  |  |
| Oakdale, CA 95361    | Project Manager:                                                            | H709095         |  |  |  |  |
| Flashpoint           |                                                                             |                 |  |  |  |  |

| Analyte                   | Result                   | Reporting<br>Limit | Units  | s I   | Dilution |   | Analyzed  | Method | Notes      |
|---------------------------|--------------------------|--------------------|--------|-------|----------|---|-----------|--------|------------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 | 16:00 | :        |   |           |        | the second |
| % Moisture                | 38                       | 0.10               | °C     |       | 1        |   | 05-Oct-07 | 1010   | 1.4        |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 | 16:00 |          | • |           |        |            |
| % Moisture                | 33                       | 0.10               | °C     |       | 1        |   | 05-Oct-07 | 1010   |            |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 | 16:00 |          | · |           |        |            |
| % Moisture                | 41                       | 0.10               | °C     |       | 1        |   | 05-Oct-07 | 1010   |            |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 | 16:00 |          |   |           |        |            |
| % Moisture                | 43                       | 0.10               | °C     |       | 1        |   | 05-Oct-07 | 1010   | ÷.,        |

(

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## الكَتْرَيْنَ المُحْدَمَةُ 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 الكَتْرَيْنَ المُ

 ConAgra Foods Inc.
 Project Number: [none]
 Image: ConAgra Aerated Pond

 554 S. Yosemite Ave.
 Project Name: ConAgra Aerated Pond
 Work Order No.:

 Oakdale, CA
 95361
 Project Manager: ----- H709095

#### Metals

| Analyte                   | Result                   | Reporting<br>Limit | Units     | Dilution |   |   |    | Analyzed  | Method                                | Note        |
|---------------------------|--------------------------|--------------------|-----------|----------|---|---|----|-----------|---------------------------------------|-------------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      | - | • |    |           | · · · · · · · · · · · · · · · · · · · |             |
| Antimony                  | ND                       | 2.0                | mg/kg     | 1        |   |   |    | 06-Oct-07 | EPA 6020A                             |             |
| Arsenic                   | 1.2                      | 1,0                | n         | u        |   |   |    | 11        | . U                                   |             |
| Barium                    | . 88                     | 5.0                | - 14      | ۳.       |   |   |    | HÊ Î      |                                       |             |
| Beryllium                 | ND                       | 1.0                | 14        | , u      |   |   |    |           | U                                     |             |
| Cadmium                   | ND                       | 1.0                | и         | U<br>    |   |   |    |           | u                                     |             |
| Chromium                  | 3.2                      | 1.0                | IF.       | · II     |   |   |    | и         | n                                     |             |
| Cobalt                    | 4.8                      | 1.0                | н         | U        |   |   |    | п         | n                                     | 1.1.1.1.1.1 |
| Copper                    | ND                       | 2.0                | μ         |          |   |   |    | พ         |                                       |             |
| Lead                      | 3.2                      | 1.0                | ÷ µ       |          |   |   | -, | - 11      |                                       | 91 - A      |
| Mercury                   | ND                       | 0.1                | 11        | н.       |   |   |    |           | <b>н</b> -                            | 1.1         |
| Molybdenum                | ND                       | 1.0                | *1        | U        |   |   |    | 11        | н                                     |             |
| Nickel                    | 5.6                      | 1.0                | 11        | н        |   |   |    | 71        | U                                     |             |
| Selenium                  | ND                       | 1.0                | n         | D        |   |   |    | *1        | U                                     |             |
| Silver                    | ND                       | 1.0                | п         | 0        |   |   |    | *1        | U                                     |             |
| Thallium                  | ND                       | 1.0                | u         | 19       |   |   |    | *1        | Ð                                     |             |
| Vanadium                  | 7,0                      | 1.0                | u         | н        |   |   |    | u         | D                                     |             |
| Zinc                      | 17                       | 5,0                | U         | 17       |   |   |    | a         | U                                     |             |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      |   |   |    |           |                                       |             |
| Antimony                  | ND                       | 2.0                | mg/kg     | 1        |   |   |    | 06-Oct-07 | EPA 6020A                             |             |
| Arsenic                   | 1,3                      | 1.0                | "         | ņ        |   |   |    | u         | "                                     |             |
| Barium                    | 87                       | 5.0                | n         | ų        |   |   |    | n         | 19                                    |             |
| Beryllium                 | ND                       | 1.0                | н         | н        |   |   |    | u         | D                                     |             |
| Cadmium                   | ND                       | 1.0                | n         | н        |   |   |    | н         | n                                     |             |
| Chromium                  | 5.9                      | 1.0                | U         | н        |   |   |    | u         |                                       |             |
| Cobalt                    | 3.7                      | 1.0                | н         | 91       |   |   |    | u         | 17                                    |             |
| Copper                    | 6.1                      | 2,0                | U         | . •      |   |   |    | U         | в                                     |             |
| Lead                      | 12                       | 1.0                | ní.       | 11       |   |   |    | u         |                                       |             |
| Mercury                   | ND                       | 0,1                | n         | Ħ        |   |   |    | н         | 11                                    |             |
| Molybdenum                | 1,2                      | 1.0                | n         | T        |   |   |    | u         | n                                     |             |
| Nickel                    | 18                       | 1.0                | н         | u        |   |   |    |           | "                                     |             |
| Selenium                  | ND                       | 1.0                |           | u        |   |   |    | U         |                                       |             |
| Silver                    | ND                       | 1.0                | ıŧ        | a        |   |   |    |           |                                       |             |
| Thallium                  | ND                       | 1.0                | н         | u        |   |   |    | u         | и                                     |             |
|                           | 6.4                      | 1.0                | ц         | a        |   |   |    | U         | IF.                                   |             |
| Vanadium<br>Zino          | 45                       | 5.0                | n         | U        |   |   |    | 0         | "                                     |             |
| Zine                      | 40                       | 5.0                |           |          |   |   |    |           |                                       |             |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## arson laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc.

554 S. Yosemite Ave. Oakdale, CA 95361

#### Project Number: [none] Project Name: ConAgra Aerated Pond Project Manager: -----



#### Metals

| Analyte                   | Result                   | Reporting<br>Limit | Units     | Dilution |    | Analyzed  | Method         | Notes                                                                                                           |
|---------------------------|--------------------------|--------------------|-----------|----------|----|-----------|----------------|-----------------------------------------------------------------------------------------------------------------|
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | ;00      |    | ·         |                | . ·                                                                                                             |
| Antimony                  | ND                       | 2.0                | mg/kg     | 1        |    | 06-Oct-07 | EPA 6020A      |                                                                                                                 |
| Arsenic                   | 1.9                      | 1.0                | "         | u ·      |    |           | U              |                                                                                                                 |
| Barium                    | 92                       | 5.0                | 11        | u .      | ÷. | и         | · II           |                                                                                                                 |
| Beryllium                 | ND                       | 1.0                | 11        | a        |    | и         | i u            |                                                                                                                 |
| Cadmium                   | ND                       | 1.0                | н         | *1       |    | М.        | . <b>"</b> . · | · .*                                                                                                            |
| Chromium                  | 6.8                      | 1.0                | и         | "        |    | "         |                |                                                                                                                 |
| Cobalt                    | 3.4                      | 1.0                | II .      | u u      |    |           |                |                                                                                                                 |
| Copper                    | . 9.5                    | 2,0                | "         | и        |    | и         | a ·            |                                                                                                                 |
| Lead                      | 12                       | 1.0                | D         | и        |    | "         | 11             |                                                                                                                 |
| Mercury                   | ND                       | 0.1                | U         |          |    | 11        | . 1 <b>1</b>   |                                                                                                                 |
| Molybdenum                | 1.0                      | 1.0                | U         | 19       |    | 0         | <b>1</b>       |                                                                                                                 |
| Nickel                    | 20                       | 1.0                | 0         | n        |    | · · ·     |                |                                                                                                                 |
| Selenium                  | ND                       | 1.0                | a         |          |    | υ.,       | R              |                                                                                                                 |
| Silver                    | ND                       | 1.0                | u         |          |    | u         | . 17           | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| Thallium                  | ND                       | 1.0                | a         | u        |    | a         | D              |                                                                                                                 |
| Vanadium                  | 6.4                      | 1.0                | 11        | u        |    | a         | n              |                                                                                                                 |
| Zinc                      | 56                       | 5.0                | 11        | 0        |    | ч.,       | п              |                                                                                                                 |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00      |    |           |                |                                                                                                                 |
| Antimony                  | ND                       | 2.0                | mg/kg     | 1        | ·  | 06-Oct-07 | EPA 6020A      |                                                                                                                 |
| Arsenic                   | 1.5                      | 1.0                | в.        | μ        |    | н         | U              |                                                                                                                 |
| Barium                    | 90                       | 5.0                | n         | ч        |    | п         | ч              |                                                                                                                 |
| Beryllium                 | ND                       | 1.0                |           | 10       |    | 16        | *1             |                                                                                                                 |
| Cadmium                   | ND                       | 1.0                |           | 11       |    | 14        | 11             |                                                                                                                 |
| Chromium                  | 7.8                      | 1.0                | u         | D        |    | 12        | и              |                                                                                                                 |
| Cobalt                    | 3.6                      | 1.0                | a         | u        |    | U         | n              |                                                                                                                 |
|                           | 8.6                      | 2.0                | a         | n        |    | н         | It             |                                                                                                                 |
| Copper<br>Lead            | 10                       | 1.0                | *1        | u        |    | U         | 11             |                                                                                                                 |
| Mercury                   | ND                       | 0.1                |           | ч        |    | a         | n              |                                                                                                                 |
| •                         | 1.0                      | 1.0                |           | ч        |    | a         | n              |                                                                                                                 |
| Molybdenum<br>Nickel      | 10                       | 1.0                | It        | u        |    | a         | н              |                                                                                                                 |
| Selenium                  | ND                       | 1.0                | 11        | 51       |    | n         | н              |                                                                                                                 |
| Silver                    | ND                       | 1.0                | Ð         | 11       |    | n         | н              |                                                                                                                 |
| Thallium                  | ND                       | 1.0                | n         |          |    | 11        | и              |                                                                                                                 |
|                           | 6.2                      | 1.0                |           | ч        |    | н         | a              |                                                                                                                 |
| Vanadium                  | 58                       | 5.0                |           | 10       |    | и         | *1             |                                                                                                                 |
| Zine                      | 50                       | 0.0                |           |          |    |           |                |                                                                                                                 |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

# الكَتْرَيْنَ الْعُلَى الْعُلَى اللهُ اللهُ اللهُ المُعَامَةُ 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | k               |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | and a sub-      |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095         |

#### Phosphorous

| Analyte                                | Result       | Reporting<br>Limit | Units     | Dilution |     | Analyzed  | Method | Notes  |
|----------------------------------------|--------------|--------------------|-----------|----------|-----|-----------|--------|--------|
| Way 012 (H709095-01) Soil Sampled: 27- | Sep-07 08:00 | Received: 28-      | Sep-07 16 | 5:00     |     |           |        |        |
| Phosphorous as P - Olsen Method        | 0.2          | 0,2                | mg/kg     | - 1      |     | 05-Oct-07 |        |        |
| Phosphorous as P - Bray Method         | ND           | 0.2                | 71        | И        |     | н         |        |        |
| Way 011 (H709095-02) Soil Sampled: 27- | Sep-07 08:00 | Received: 28-      | Sep-07 16 | 5:00     |     |           |        | 1 A. 1 |
| Phosphorous as P - Olsen Method        | 0.4          | 0.2                | mg/kg     | 1        |     | 05-Oct-07 |        |        |
| Phosphorous as P - Bray Method         | 0.2          | 0.2                | n         | 11       |     | U.        |        |        |
| Way 009 (H709095-03) Soil Sampled: 27- | Sep-07 08:00 | Received: 28-      | Sep-07 16 | 5:00     |     |           |        | · .    |
| Phosphorous as P - Olsen Method        | ND           | 0.2                | mg/kg     | 1        |     | 05-Oct-07 |        |        |
| Phosphorous as P - Bray Method         | 0,8          | 0.2                | u         | ท        | • . | н         |        |        |
| Way 005 (H709095-04) Soil Sampled: 27- | Sep-07 08:00 | Received: 28-      | Sep-07 16 | 5:00     |     |           |        |        |
| Phosphorous as P - Olsen Method        | ND           | 0.2                | mg/kg     | 1.       |     | 05-Oct-07 |        |        |
| Phosphorous as P - Bray Method         | 1.0          | 0.2                | 11        | п.       |     | D         |        |        |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## @IBOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc.

554 S. Yosemite Ave. Oakdale, CA 95361 Project Number: [none] Project Name: ConAgra Aerated Pond Project Manager: ------ Work Order No.: H709095

#### SMP Buffer pH

| Analyte                   | . Result                 | Reporting<br>Limit Units  | Dilution |   | Analyzed  | Method | Note      |
|---------------------------|--------------------------|---------------------------|----------|---|-----------|--------|-----------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        |   | · .       |        |           |
| рН                        | 7.4                      | pH Units                  | 1        |   | 10-Oct-07 |        | e - 1     |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        |   |           |        | . <u></u> |
| рН                        | 7.6                      | pH Units                  | i        |   | 10-Oct-07 | •••••  |           |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        | N | 11. C     |        |           |
| pH                        | 7.6                      | pH Units                  | 1        |   | 10-Oct-07 |        |           |
|                           | Sampled: 27-Sep-07 08:00 | Received: 28-Sep-07 16:00 | )        |   |           |        |           |
| pH                        | . 7.7                    | pH Units                  | 1        |   | 10-Oct-07 |        |           |

Approved By Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## alka 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| onAgra Foods Inc. Project Number: [none] |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                             |                                                             | ن النج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Work Order No.:                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | H709093                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | S                                                                                                                                  | Soil Salin                                                                                                                                                                                                                                                                                                                                                                                                                                  | ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Result                                   | Reporting<br>Limit                                                                                                                 | Units                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | Analyzed                                                    | Method                                                      | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sampled: 27-Sep-07 08:00                 | Received: 28-                                                                                                                      | Sep-07 16                                                                                                                                                                                                                                                                                                                                                                                                                                   | :00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |                                                             | :                                                           | P-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 320                                      | 5.0                                                                                                                                | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 10-Oct-07                                                   | EPA 120.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sampled: 27-Sep-07 08:00                 | Received: 28-                                                                                                                      | Sep-07 16                                                                                                                                                                                                                                                                                                                                                                                                                                   | :00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                             |                                                             | P-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 530                                      | 5.0                                                                                                                                | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | 10-Oct-07                                                   | EPA 120.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sampled: 27-Sep-07 08:00                 | Received: 28-                                                                                                                      | Sep-07 16                                                                                                                                                                                                                                                                                                                                                                                                                                   | :00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 - 10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                             |                                                             | P-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1200                                     | 5,0                                                                                                                                | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 10-Oct-07                                                   | EPA 120.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sampled: 27-Sep-07 08:00                 | Received: 28-                                                                                                                      | Sep-07 16                                                                                                                                                                                                                                                                                                                                                                                                                                   | :00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |                                                             | •                                                           | P-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2500                                     | 5.0                                                                                                                                | uS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | 10-Oct-07                                                   | EPA 120.1                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          | Sampled: 27-Sep-07 08:00<br>320<br>Sampled: 27-Sep-07 08:00<br>530<br>Sampled: 27-Sep-07 08:00<br>1200<br>Sampled: 27-Sep-07 08:00 | Project N           Project Mar           Project Mar           Project Mar           Sampled: 27-Sep-07 08:00           Received: 28-           Sampled: 27-Sep-07 08:00           Received: 28-           Sampled: 27-Sep-07 08:00           Received: 28-           Sampled: 27-Sep-07 08:00           Sampled: 27-Sep-07 08:00           Sampled: 27-Sep-07 08:00           Sampled: 27-Sep-07 08:00           Sampled: 27-Sep-07 08:00 | Project Name: Con         Project Manager:         Project Manager:         Soil Salin         Result       Reporting         Limit       Units         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16 | Project Name: ConAgra Aerated         Project Manager:         Soil Salinity         Soil Salinity         Result       Units       Dilution         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00 | Project Name:       ConAgra Aerated Pond         Project Manager: | Project Name: ConAgra Aerated Pond         Project Manager: | Project Name: ConAgra Aerated Pond         Project Manager: | Project Name: ConAgra Aerated Pond       Work Order         Project Manager:        H70909         Soll       Salinity       Method       Method         Result       Reporting<br>Limit       Units       Dilution       Analyzed       Method         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1         Sampled: 27-Sep-07 08:00       Received: 28-Sep-07 16:00       Io-Oct-07       EPA 120.1 |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

l

A

## @ 30 h laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

Project Number: [none] Project Name: ConAgra Aerated Pond Project Manager: ------

Work Order No.: H709095

#### Total Kjeldahl Nitrogen by EPA 351.2

| Analyte                   | Result                   | Reporting<br>Limit | Units      | Dilution | S = M | Analyzed  | Method | Notes |
|---------------------------|--------------------------|--------------------|------------|----------|-------|-----------|--------|-------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |       |           |        |       |
| Total Kjeldahl Nitrogen   | 60                       | 5.0                | mg/kg      | 1        |       | 05-Oct-07 | 351.2  |       |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |       |           |        |       |
| Total Kjeldahl Nitrogen   | 180                      | 5.0                | mg/kg      | 1        |       | 05-Oct-07 | 351,2  |       |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |       |           |        |       |
| Total Kjeldahl Nitrogen   | 390                      | 5.0                | mg/kg      | 1        |       | 05-Oct-07 | 351,2  |       |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16: | 00       |       |           |        | ÷     |
| Total Kjeldahl Nitrogen   | 460                      | 5.0                | mg/kg      | 1        |       | 05-Oct-07 | 351,2  | •     |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## الكَتْرَيْنَ المُحْدَمَةُ 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 المَالَي المُحْدَةُ مُحْدَةً مُحْدَةً مُحْدَةً مُحْدَةً مُحْدَةً المُحْدَةُ المُحْدَةُ المُحْدَةُ المُحْدَةُ مُحْدَةُ مُحْدَةُ مُحْدَةُ المُحْدَةُ المُحْدَةُ المُحْدَةُ مُحْدَةً مُحْدَةً مُحْدَةً مُحْدَةً مُحْدَةُ مُحْدَةً مُحْدَةً مُحْدً

| ConAgra Foods Inc.   | Project Number: [none]             |                 |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H709095         |
|                      | Total Organic Carbon               |                 |
|                      |                                    |                 |
|                      | Reporting                          |                 |

| Analyte                   | Result                   | Reporting<br>Limit | Units     | Dilution      | Analyzed  | Method  | Notes |
|---------------------------|--------------------------|--------------------|-----------|---------------|-----------|---------|-------|
| Way 012 (H709095-01) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | i:00          |           | · .     |       |
| Total Organic Carbon      | 1000                     | 200                | mg/kg     | 1             | 05-Oct-07 | SM5310B |       |
| Way 011 (H709095-02) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | i:00          |           |         |       |
| Total Organic Carbon      | 17000                    | 200                | mg/kg     | 1             | 05-Oct-07 | SM5310B |       |
| Way 009 (H709095-03) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | :00           |           |         |       |
| Total Organic Carbon      | 16000                    | 200                | mg/kg     | 1             | 05-Oct-07 | SM5310B |       |
| Way 005 (H709095-04) Soil | Sampled: 27-Sep-07 08:00 | Received: 28-      | Sep-07 16 | <b>i:00</b> · |           |         |       |
| Total Organic Carbon      | 18000                    | 200                | mg/kg     | 1             | 05-Oct-07 | SM5310B |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 | Project Number: [none]<br>Project Name: ConAgra Aerated Pond<br>Project Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          |                |                  |             |                |     | Work Order No.:<br>H709095 |       |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------------|------------------|-------------|----------------|-----|----------------------------|-------|--|
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alkalini           | ty - Qua | lity Contro    | 1.               |             |                |     |                            |       |  |
| Argon Laboratories                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |                |                  |             |                |     |                            | · .   |  |
| Analyte                                                         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit               | Notes |  |
| Batch HQJ0087 - General Prep                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |                |                  |             |                |     |                            |       |  |
| Blank (HQJ0087-BLK1)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          | Prepared &     | k Analyzed       | I: 10/06/07 |                |     | • •                        |       |  |
| Fotal Alkalinity                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                 | mg/kg    |                |                  |             |                |     |                            |       |  |
| LCS (HQJ0087-BS1)                                               | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |                    |          | Prepared &     | k Analyzed       | 1: 10/06/07 |                |     | · · · ·                    |       |  |
| Fotal Alkalinity                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | mg/kg    | 100            | •                | 100         | 80-120         |     | · · · ·                    |       |  |
| LCS Dup (HQJ0087-BSD1)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          | Prepared &     | k Analyzed       | l: 10/06/07 |                |     |                            |       |  |
| Fotal Alkalinity                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | mg/kg    | 100            | • • •            | 100         | 80-120         | 0   | 20                         |       |  |
| Matrix Spike (HQJ0087-MS1)                                      | Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rce: H70909        | 5-01     | Prepared &     | z Analyzed       | 10/06/07    |                |     |                            |       |  |
| Fotal Alkalinity                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | mg/kg    | 100            | 320              | 100         | 70-130         |     |                            |       |  |
| Matrix Spike Dup (HQJ0087-MSD1)                                 | Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rce: H709095       | 5-01     | Prepared &     | k Analyzed       | 1: 10/06/07 |                |     |                            |       |  |
| Fotal Alkalinity                                                | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | mg/kg    | 100            | 320              | 100         | 70-130         | 0   | 20                         |       |  |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359
| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |        | Project Number: [none]<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |          |                |                  |           |                |     |              |       |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------------|----------|----------------|------------------|-----------|----------------|-----|--------------|-------|
|                                                                 |        | Ammonia                                                                          | as N - Q | uality Con     | trol             |           |                |     |              |       |
| Argon Laboratories                                              |        |                                                                                  |          |                |                  |           |                |     |              |       |
| Analyte                                                         | Result | Reporting<br>Limit                                                               | Units    | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|                                                                 | · · ·  |                                                                                  |          |                |                  |           |                |     |              |       |
| Blank (HQJ0086-BLK1)                                            | •••    |                                                                                  |          | Prepared:      | 10/04/07         | Analyzed: | 10/10/07       |     |              |       |
| ammonia as N                                                    | ND     | 1.0                                                                              | mg/kg    |                |                  |           |                |     |              |       |
| .CS (HQJ0086-BS1)                                               |        |                                                                                  |          | Prepared:      | 10/04/07         | Analyzed: | 10/10/07       |     |              |       |
| mmonia as N                                                     | 3,60   |                                                                                  | mg/kg    | 4.00           |                  | 90        | 80-120         |     |              |       |
| .CS Dup (HQJ0086-BSD1)                                          |        |                                                                                  |          | Prepared:      | 10/04/07         | Analyzed: | 10/10/07       |     |              |       |
| Ammonia as N                                                    | 4.20   |                                                                                  | mg/kg    | 4.00           |                  | 105       | 80-120         | 15  | 20           |       |

| argon laboratori                           | 2905 Railroad     | Ave. Ceres,                                                  | CA 95307 | (209)581       | -9280 Fa         | x (209)581 | -9282 |     | . K          | A.    |  |  |  |
|--------------------------------------------|-------------------|--------------------------------------------------------------|----------|----------------|------------------|------------|-------|-----|--------------|-------|--|--|--|
| ConAgra Foods Inc.<br>554 S. Yosemite Ave. |                   | Project Number: [none]<br>Project Name: ConAgra Aerated Pond |          |                |                  |            |       |     |              |       |  |  |  |
| Oakdale, CA 95361 Project Manager:         |                   |                                                              |          |                |                  |            |       |     | H709095      |       |  |  |  |
|                                            | Anions by Ion Chr | omatograp                                                    | hy - EPA | Method 3       | 300.0 - Qi       | ality Co   | ntrol |     |              |       |  |  |  |
| Argon Laboratories                         |                   |                                                              |          |                |                  |            |       |     |              |       |  |  |  |
| Analuta                                    | Pacult            | Reporting                                                    | Unite    | Spike<br>Level | Source<br>Result | %RFC       | %REC  | RPD | RPD<br>Limit | Notes |  |  |  |

| Analyte                         | Result | Limit      | Units | Level      | Result     | %REC                | Limits | RPD | Limit | Notes |
|---------------------------------|--------|------------|-------|------------|------------|---------------------|--------|-----|-------|-------|
| Batch HQJ0084 - General Prep    | ·      |            |       |            |            |                     |        |     |       |       |
| Blank (HQJ0084-BLK1)            | · .    |            |       | Prepared & | & Analyzed | 1; 10/04/07         |        |     |       |       |
| Nitrate as N                    | ND     | 2,0        | mg/kg |            |            |                     |        |     |       |       |
| LCS (HQJ0084-BS1)               |        |            |       | Prepared & | & Analyzed | 1: 1 <u>0/04/07</u> |        |     |       |       |
| Nitrate                         | 8.8    |            | mg/kg | 10.0       |            | 88                  | 80-120 |     |       |       |
| LCS Dup (HQJ0084-BSD1)          |        |            |       | Prepared & | & Analyzed | i: 10/04/07         |        |     |       |       |
| Nitrate                         | 8.5    |            | mg/kg | 10.0       | -          | 85                  | 80-120 | 3   | 20    |       |
| Matrix Spike (HQJ0084-MS1)      | Sourc  | e: H710006 | 5-08  | Prepared & | & Analyzed | 1: 10/04/07         |        | :   |       | ÷.,   |
| Nitrate                         | 8.6    |            | mg/kg | 10.0       | ND         | 86                  | 80-120 |     |       |       |
| Matrix Spike Dup (HQJ0084-MSD1) | Sourc  | e: H710006 | 6-08  | Prepared & | & Analyzed | i: 10/04/07         | · ·    |     |       | į     |
| Nitrate                         | 8.7    |            | mg/kg | 10.0       | ND         | 87                  | 80-120 | 1   | 20    |       |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 | 2905 Railroad A | Work Ord<br>H7090    |            |                |                  |            |                |     |              |       |
|-----------------------------------------------------------------|-----------------|----------------------|------------|----------------|------------------|------------|----------------|-----|--------------|-------|
| · · · · · · · · · · · · · · · · · · ·                           | Arseni          | e, HCO3 Ext          | ractab     | ole - Qualit   | y Contro         |            |                |     |              |       |
| Argon Laboratories                                              |                 |                      |            |                |                  |            |                |     |              |       |
| Analyte                                                         | Result          | Reporting<br>Limit 1 | Units      | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch HQJ0094 - EPA 3050B                                       |                 |                      |            |                |                  |            |                |     | -            |       |
| Blank (HQJ0094-BLK1)                                            |                 |                      |            | Prepared &     | z Analyzed       | : 10/07/07 | ,              |     |              |       |
| Arsenic                                                         | ND              | 1,0 n                | ng/kg      |                |                  |            |                |     |              |       |
| LCS (HQJ0094-BS1)                                               |                 |                      |            | Prepared &     | k Analyzed       | : 10/07/07 | ,              |     | ۰.           |       |
| ursenic                                                         | 10              | n                    | ng/kg      | 10,0           | · ··· <b>·</b>   | 100        | 80-120         |     |              |       |
| .CS Dup (HQJ0094-BSD1)                                          |                 |                      |            | Prepared &     | 2 Analyzed       | : 10/07/07 | ,              |     |              |       |
| Arsenic                                                         | 9.6             | · . n                | ng/kg      | 10.0           | ,                | 96         | 80-120         | 4   | 20           |       |
| Matrix Spike (HQJ0094-MS1)                                      | Sou             | ·ce: H709095-0       | 1          | Prepared &     | 2 Analyzed       | : 10/07/07 | ,              |     |              |       |
| Arsenic                                                         | 12              |                      | -<br>ng/kg | 10.0           | ND               | 120        | 70-130         |     |              |       |
| Matrix Spike Dup (HQJ0094-MSD1)                                 | Sour            | ·ce; H709095-0       | 1          | Prepared &     | د<br>Analyzed    | : 10/07/07 | ,              |     |              |       |
| Arsenic                                                         | 12              | n                    | ng/kg      | 10.0           | ND               | 120        | 70-130         | 0   | 20           |       |

| engon laboratorie:                         | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | AA              |
|--------------------------------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.<br>554 S. Yosemite Ave. | Project Number: [none]<br>Project Name: ConAgra Aerated Pond       | Work Order No.: |
| Oakdale, CA 95361                          | Project Manager:                                                   | H709095         |
|                                            | Cation Exchange Capacity - Quality Control                         |                 |

### Argon Laboratories

| Analyte                      | ; | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes      |
|------------------------------|---|--------|--------------------|-----------|----------------|------------------|-------------|----------------|-----|--------------|------------|
| Batch HQJ0092 - General Prep |   |        |                    |           |                |                  |             | · · · ·        |     |              |            |
| Blank (HQJ0092-BLK1)         |   |        |                    |           | Prepared &     | & Analyzed       | I: 10/09/07 |                |     | <u> </u>     | <u>, 1</u> |
| Cation Exchange Capacity     |   | ND     | 2.0                | meq/100 g |                |                  |             |                |     |              |            |

Approved By

## @ISOID laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | N               |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | with which is   |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095         |

#### **DTPA Extractable Metals - Quality Control**

### **Argon Laboratories**

| Analyte                          | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD .<br>Limit | Notes |
|----------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|----------------|-------|
| Batch HQJ0093 - DTPA Extractable |        |                    |       |                |                  |             |                |     |                |       |
| Blank (HQJ0093-BLK1)             |        |                    |       | Prepared       | & Analyzed       | l: 10/07/07 |                |     |                |       |
| Antimony                         | ND     | 2.0                | mg/kg |                |                  |             |                |     |                |       |
| Arsenic                          | ND     | 1.0                | u     |                |                  |             |                |     |                |       |
| Barium                           | ND     | 5.0                |       |                |                  |             |                |     |                |       |
| Beryllium                        | ND     | 1.0                | U     |                |                  |             |                |     |                |       |
| Cadmium                          | ND     | 1.0                |       |                |                  |             |                |     |                |       |
| Chromium                         | ND     | 1.0                |       |                |                  |             |                |     |                |       |
| Cobalt                           | ND     | 1.0                |       |                |                  |             |                |     |                |       |
| Copper                           | ND     | 2.0                | 17    |                |                  |             |                |     |                |       |
| Iron                             | ND     | 20                 | 19    |                |                  |             |                |     |                |       |
| Lead                             | ND     | 1.0                | 14    |                |                  |             |                |     |                |       |
| Manganese                        | ND     | 20                 | 17    |                |                  |             |                |     |                |       |
| Mercury                          | ND     | 0.10               | н     |                |                  |             |                |     |                |       |
| Molybdenum                       | ND     | 1.0                |       |                |                  |             |                |     |                |       |
| Nickel                           | ND     | 1.0                |       |                |                  |             |                |     |                |       |
| Selenium                         | ND     | 1.0                | н     |                |                  |             |                |     |                |       |
| Silver                           | ND     | 1.0                | 11    |                |                  |             |                |     |                |       |
| Thallium                         | ND     | 1.0                | *1    |                |                  |             |                |     |                |       |
| Vanadium                         | ND     | 1.0                | τi    |                |                  |             |                |     |                |       |
| Zinc                             | ND     | 5.0                | si    |                |                  |             |                |     |                |       |
| LCS (HQJ0093-BS1)                |        |                    |       | Prepared a     | & Analyzed       | I: 10/07/07 |                |     |                |       |
| Antimony                         | 8.50   |                    | mg/kg | 10.0           |                  | 85          | 80-120         |     |                |       |
| Arsenic                          | 8.60   |                    | a     | 10.0           |                  | 86          | 80-120         |     |                |       |
| Barium                           | 111    |                    | a     | 100            |                  | 111         | 80-120         |     |                |       |
| Beryllium                        | 10.2   |                    | u     | 10.0           |                  | 102         | 80-120         |     |                |       |
| Cadmium                          | 10.4   |                    | ч     | 10.0           |                  | 104         | 80-120         |     |                |       |
| Chromium                         | 9.00   |                    | н     | 10.0           |                  | 90          | 80-120         |     |                |       |
| Cobalt                           | 8,20   |                    | н     | 10.0           |                  | 82          | 80-120         |     |                |       |
| Copper                           | 8.80   |                    | н     | 10,0           |                  | 88          | 80-120         |     |                |       |
| Iron                             | 100    |                    | U     | 100            |                  | 100         | 80-120         |     |                |       |
| Lead                             | 9.10   |                    | D     | 10.0           |                  | 91          | 80-120         |     |                |       |
| Manganese                        | 101    |                    | D     | 100            |                  | 101         | 80-120         |     |                |       |
| Mercury                          | 0,48   |                    | n     | 0.500          |                  | 96          | 80-120         |     |                |       |
| Molybdenum                       | 10,5   |                    | н     | 10.0           |                  | 105         | 80-120         |     |                |       |
| Nickel                           | 8.70   |                    | 17    | 10,0           |                  | 87          | 80-120         |     |                |       |
| Selenium                         | 11.8   |                    | IP.   | 10,0           |                  | 118         | 80-120         |     |                |       |
| Silver                           | 9.70   | -                  | μ     | 10.0           |                  | 97          | 80-120         |     |                |       |

Approved By

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | <u>} \ \ \</u>  |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | - This will     |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095         |

### DTPA Extractable Metals - Quality Control

### **Argon Laboratories**

| Analysis         Annu Annu Annu Annu Annu Annu Annu Annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · ·                            | Darult | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|--------|
| CS (HQ J0093-BS1)         Prepared & Analyzed:         10.0         88         80-120           Thailiom         8.60         *         10.0         86         80-120           Sance         93.0         *         10.0         83         80-120           Sance         93.0         *         10.0         83         80-120           Analyzed:         10/07/07         7         2         20           Analyzed:         10/07/07         83         80-120         2         20           Analyzed:         10/0         83         80-120         4         20           Sarium         115         *         10.0         115         80-120         4         20           Sarium         10.6         *         10.0         106         80-120         2         20           Chamium         10.6         *         10.0         100         80-120         1         20           Chamium         10.0         *         10.0         100         80-120         1         20           Chamium         10.0         *         10.0         100         80-120         1         20           Chamium         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyle                          | Result | Linut              | Units |                | Result           | 70KEC       | Dimita         | N D |              | 110105 |
| Institution         10.8         mg/kg         10.0         10.8         80-120           Vanadium         8.60         "         10.0         66         80-120           Groc         93.0         "         100         93         80-120           Cis Dup (HQJ0033-BSD1)         Prepared & Analyzed: 10/07/07         -         -         -           Autinony         8.30         "         110.0         83         80-120         2         20           Saruim         115         "         100         115         80-120         4         20           Saruim         11.3         "         10.0         113         80-120         2         20           Cistomium         10.6         "         10.0         113         80-120         10         20           Colati         8.80         "         10.0         88         80-120         1         20           Colati         8.50         "         10.0         88         80-120         3         20           Colati         8.50         "         10.0         88         80-120         1         20           Colati         10.0         10.0         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Batch HQJ0093 - DTPA Extractable |        |                    |       |                | <u> </u>         |             |                |     |              |        |
| Initialitie         Reference         IDO         Reference         Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LCS (HQJ0093-BS1)                |        |                    |       | Prepared &     | k Analyzed       | 1: 10/07/07 |                |     |              |        |
| Markanishis         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0         93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 10.8   |                    | mg/kg | 10.0           |                  | 108         | 80-120         |     |              |        |
| Propared & Analyzed: 1/0/7/07           LCS Durp(IQ.00033-BSD1)         Propared & Analyzed: 1/0/7/07           Nimony         8.30         mg/kg         10.0         8.3         80-120         2         20           Arenio         8.30         "         10.0         8.3         80-120         2         20           Arenio         11.3         "         10.0         11.3         80-120         4         20           Sarium         11.3         "         10.0         11.3         80-120         10         20           Sarium         10.6         "         10.0         10.6         80-120         1         20           Chomium         10.0         *         10.0         88         80-120         7         20           Chomium         10.0         *         10.0         88         80-120         1         20           Chomium         10.0         *         10.0         10.0         80-120         2         2           Chomium         0.0         *         10.0         10.0         80-120         1         20           Chomium         0.0         *         10.0         10.0         80-120         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vanadium                         | 8.60   |                    | ų     | 10,0           |                  | 86          | 80-120         |     |              |        |
| Nation of the formation | Zinc                             | 93.0   |                    | п     | 100            |                  | 93          | 80-120         |     |              |        |
| Antimony         8.30         mg/kg         10.0         8.3         80-120         2         20           Vrsenic         8.30         "         10.0         83         80-120         4         20           Sardum         11.5         "         10.0         11.5         80-120         4         20           Sardum         11.3         "         10.0         113         80-120         2         20           Sardum         10.6         "         10.0         106         80-120         1         20           Sardum         10.0         "         10.0         88         80-120         1         20           Schontim         10.0         "         10.0         85         80-120         1         20           Sopper         8.50<"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .CS Dun (HOJ0093-BSD1)           |        |                    |       | Prepared &     | & Analyzed       | i: 10/07/07 |                |     |              |        |
| kasenic         8.30         "         10.0         83         80-120         4         20           barum         115         "         100         115         80-120         4         20           barum         11.3         "         10.0         115         80-120         2         20           barum         10.6         "         10.0         106         80-120         1         20           Chomium         10.0         "         10.0         88         80-120         7         20           Chomium         10.0         "         10.0         87.5         80-120         3         20           Chomium         10.0         "         10.0         80         80-120         1         20           Chomium         10.0         "         10.0         90         80-120         1         20           Chomanese         10.0         "         10.0         10.3         80-120         1         20           Kotkel         8.20         "         10.0         10.3         80-120         2         20           Kotkel         8.20         "         10.0         10.0         10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 8.30   |                    | mg/kg | 10.0           |                  | 83          | 80-120         | 2   | 20           |        |
| sarium       115       "       100       115       80-120       4       20         beryllum       11.3       "       10.0       113       80-120       2       20         cadmium       10.0       "       10.0       100       80-120       2       20         cadmium       10.0       "       10.0       80-120       10       20       20         cadmium       8.00       "       10.0       88       80-120       7       20         cobalt       8.00       "       10.0       85       80-120       0       20         coper       9.00       "       10.0       90       80-120       1       20         dereury       0.60       "       10.0       100       80-120       2       20         dereury       0.60       "       10.0       103       80-120       2       20         dereury       0.60       "       10.0       80-120       12       20       20         siderium       10.3       "       10.0       80-120       13       20       20         Siderium       10.4       "       10.0       108       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                | 8,30   |                    | ų     | 10.0           |                  | 83          | 80-120         | 4   | 20           |        |
| henyllium       11.3       "       10.0       113       80-120       20         Admium       10.6       "       10.0       100       80-120       2       20         Chromium       10.0       "       10.0       80-120       81       20         Chromium       8.80       "       10.0       88       80-120       7       20         Chromium       8.80       "       10.0       85       80-120       7       20         Copper       8.50       "       10.0       80       80-120       1       20         Cond       "       100       100       90       80-120       1       20         Cadatom       100       "       100       100       80-120       1       20         Marganese       100       "       0.500       "       120       80-120       2       20         Mickel       8.20       "       10.0       103       80-120       2       20         Silver       9.40       "       10.0       14       80-120       13       20         Chadium       10.4       "       10.0       104       80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |        |                    | u     | 100            |                  | 115         | 80-120         | 4   | 20           |        |
| Dadmium       10.6       *       10.0       10.0       80-120       2       20         Chromium       10.0       *       10.0       80-120       11       20         Dobalt       8.80       *       10.0       88       80-120       1       20         Cobalt       8.80       *       10.0       88       80-120       3       20         Cobart       100       *       100       100       80-120       0       20         con       100       *       100       100       80-120       1       20         cond       100       *       100       100       80-120       1       20         decruty       0.60       *       0.500       120       80-120       2       20         Molybdenum       10.3       *       10.0       103       80-120       2       20         Stelenum       10.4       *       10.0       103       80-120       3       20         Stelenum       10.4       *       10.0       108       80-120       3       20         Stelenum       10.4       *       10.0       108       80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | 11.3   |                    | 11    | 10.0           |                  | 113         | 80-120         | 10  | 20           |        |
| Incomium       10.0       "       10.0       80-120       11       20         Sobalt       8.80       "       10.0       88       80-120       7       20         Jopper       8.50       "       10.0       85       80-120       7       20         Jopper       100       "       100       100       80-120       3       20         con       100       "       100       90       80-120       1       20         adaganese       100       "       100       90       80-120       1       20         dercury       0.60       "       0.50       100       80-120       2       20         dercury       0.60       "       0.00       103       80-120       3       20         dercury       0.60       "       10.0       104       80-120       3       20         dercury       0.60       "       10.0       104       80-120       3       20         dercury       0.40       "       10.0       104       80-120       3       20         Varadium       9.70       "       10.0       94       80-120       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                | 10.6   |                    | и     | 10.0           | ,                | 106         | 80-120         | 2   | 20           |        |
| Sobalt         8.80         "         10.0         8.8         80-120         7         20           Copper         8.50         "         10.0         85         80-120         3         20           con         100         "         100         100         85         80-120         3         20           con         100         "         100         100         80-120         1         20           denganese         100         "         100         80-120         1         20           dolybdenum         0.60         "         0.500         120         80-120         2         20           dolybdenum         10.3         "         10.0         103         80-120         2         20           Kickl         8.20         "         10.0         104         80-120         13         20           Silver         9.40         "         10.0         108         80-120         12         20           Anadium         9.40         "         10.0         108         80-120         13         20           Mitrix Spike (HQJ0093-MS1)         Source: H709095-01         Prepared & Analyzed: H0/07/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 10.0   |                    | н     | 10.0           |                  | 100         | 80-120         | 11  | 20           |        |
| Scopper         8.50         "         10.0         85         80-120         3         20           ron         100         "         100         100         80-120         0         20           e.ed         9.00         "         10.0         90         80-120         1         20           danganese         100         "         100         80-120         1         20           decrury         0.60         "         0.500         103         80-120         2         20           dolybdenum         10.3         "         10.0         103         80-120         2         20           stekel         8.20         "         10.0         104         80-120         3         20           stekel         8.20         "         10.0         104         80-120         3         20           Stever         9.40         "         10.0         104         80-120         3         20           Cine         10.8         "         10.0         108         80-120         13         20           Cine         10.6         "         10.0         ND         80         70-130         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 8,80   |                    |       | 10.0           |                  | 88          | 80-120         | 7   | 20           |        |
| non       100       "       100       100       80-120       0       20         .ead       9,00       "       10.0       90       80-120       1       20         danganese       100       "       100       100       80-120       2       20         dercury       0,60       "       0,500       120       80-120       2       20         dolybdenum       10.3       "       10.0       103       80-120       2       20         skela       8,20       "       10.0       103       80-120       3       20         skelenium       10.4       "       10.0       104       80-120       3       20         Silver       9,40       "       10.0       94       80-120       3       20         Challinm       10.8       "       10.0       108       80-120       12       20         Silver       9,40       "       10.0       108       80-120       12       20         Challinm       10.6       "       10.0       ND       80       120       13       20         Silver       Souree: H709095-01       Prepared & Amalyzed: ID/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 8,50   |                    | U     | 10.0           |                  | 85          | 80-120         | 3   | 20           |        |
| ead       9.00       "       10.0       90       80-120       1       20         Aanganese       100       "       100       100       80-120       1       20         Aercury       0.60       "       0.500       120       80-120       22       20         Aolybdenum       10.3       "       10.0       103       80-120       2       20         Kickel       8.20       "       10.0       104       80-120       13       20         Kickel       9.40       "       10.0       104       80-120       3       20         Kikkel       9.40       "       10.0       108       80-120       3       20         Kikkel       9.40       "       10.0       108       80-120       3       20         Kikkel       9.40       "       10.0       108       80-120       12       20         Kandium       10.8       "       10.0       108       80-120       13       20         Kandium       9.70       "       10.0       ND       80       70-130       12       20         Kandium       No       80       mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 100    |                    | U     | 100            |                  | 100         | 80-120         | 0   | 20           |        |
| Aaaganese       100       "       100       80-120       1       20         Aercury       0.60       "       0.500       120       80-120       22       20         Aolybdenum       10.3       "       10.0       103       80-120       2       20         Aolybdenum       10.3       "       10.0       103       80-120       2       20         Kelenium       10.3       "       10.0       103       80-120       6       20         Kelenium       10.4       "       10.0       94       80-120       3       20         Anadium       9.40       "       10.0       94       80-120       0       20         Anadium       9.70       "       10.0       18       80-120       12       20         Antrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       12       20         Antrix Spike (HQJ0093-MS1)       8.00       mg/kg       10.0       ND       80       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Sarium       8.60       "       10.0       ND       98 <t< td=""><td></td><td>9.00</td><td></td><td>n</td><td>10.0</td><td></td><td>90</td><td>80-120</td><td>1</td><td>20</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 9.00   |                    | n     | 10.0           |                  | 90          | 80-120         | 1   | 20           |        |
| Acround       0.60       "       0.500       120       80-120       22       20         Actypidenum       10.3       "       10.0       103       80-120       2       20         Kickel       8.20       "       10.0       82       80-120       6       20         Kickel       8.20       "       10.0       104       80-120       13       20         Kickel       9.40       "       10.0       94       80-120       3       20         Kallium       10.8       "       10.0       94       80-120       13       20         Anadium       9.70       "       10.0       97       80-120       12       20         Kine       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       12       20         Nationoy       8.00       mg/kg       10.0       ND       80       70-130         Areaci       9.50       "       10.0       ND       85       70-130         Sarium       8.80       "       10.0       ND       98       70-130 </td <td></td> <td></td> <td></td> <td>u</td> <td>100</td> <td></td> <td>100</td> <td>80-120</td> <td>1</td> <td>20</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |                    | u     | 100            |                  | 100         | 80-120         | 1   | 20           | -      |
| Adalybdenum       10.3       "       10.0       103       80-120       2       20         Nickel       8.20       "       10.0       82       80-120       6       20         Letenium       10.4       "       10.0       104       80-120       13       20         Silver       9.40       "       10.0       104       80-120       3       20         Nallium       10.8       "       10.0       108       80-120       0       20         Anadium       9.70       "       10.0       97       80-120       13       20         Sine       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MSI)       Source: H709095-01       Prepared & Analyzed: 10/07/07       13       20         Matrix Spike (HQJ0093-MSI)       Source: H709095-01       Prepared & Analyzed: 10/07/07       13       20         Matrix Spike (HQJ0093-MSI)       Source: H709095-01       Prepared & Analyzed: 10/07/07       13       20         Matrix Spike (HQJ0093-MSI)       8.00       mdlon       ND       80       70-130       14         Sarum       8.00       "       10.0       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                |        |                    | u     | 0,500          |                  | 120         | 80-120         | 22  | 20           |        |
| Solution       8.20       "       10.0       82       80-120       6       20         Selenium       10.4       "       10.0       104       80-120       13       20         Silver       9.40       "       10.0       94       80-120       3       20         Challium       10.8       "       10.0       108       80-120       0       20         Arandium       9.70       "       10.0       97       80-120       12       20         Cinc       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       13       20         Antimony       8.00       mg/kg       10.0       ND       80       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Garium       9.80       "       10.0       ND       98       70-130         Chronium       8.80       "       10.0       ND       98       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                | 10,3   |                    | u     | 10.0           |                  | 103         | 80-120         | 2   | 20           |        |
| identium       10,4       "       10,0       104       80-120       13       20         Silver       9,40       "       10,0       94       80-120       3       20         Thallium       10,8       "       10,0       108       80-120       0       20         Vanadium       9,70       "       10,0       97       80-120       12       20         Cine       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       -       -       -         Antimony       8.00       mg/kg       10.0       ND       80       70-130         Sarum       8.50       "       10.0       ND       85       70-130         Sarum       10.8       "       10.0       ND       98       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Cabalt       9.10       "       10.0       ND       91       70-130         Cobalt       9.10       "       10.0       0.48       90       70-130         copper </td <td>•</td> <td></td> <td></td> <td>*1</td> <td>10,0</td> <td></td> <td>82</td> <td>80-120</td> <td>6</td> <td>20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                |        |                    | *1    | 10,0           |                  | 82          | 80-120         | 6   | 20           |        |
| Silver       9.40       "       10.0       94       80-120       3       20         Challium       10.8       "       10.0       108       80-120       0       20         Anadium       9.70       "       10.0       97       80-120       12       20         Cine       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       ND       80       70-130         Antimony       8.00       mg/kg       10.0       ND       80       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Barium       87.6       "       100       2.6       85       70-130         Source: H70908       "       10.0       ND       98       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Cadmium       9.80       "       10.0       ND       91       70-130         Cobalt       9.10       "       10.0       ND       97       70-130         Copper       10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |        |                    | и     | 10.0           |                  | 104         | 80-120         | 13  | 20           |        |
| Challium       10.8       "       10.0       108       80-120       0       20         Vanadium       9,70       "       10.0       97       80-120       12       20         Line       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MSI)       Source: H709095-01       Prepared & Analyzed: 10/07/07       Prepared & Analyzed: 10/07/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |        |                    | 18    | 10.0           |                  | 94          | 80-120         | 3   | 20           |        |
| Manuffund       9,70       "       10.0       97       80-120       12       20         Cine       106       "       100       106       80-120       13       20         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07       Prepared & Analyzed: 10/07/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |        |                    |       | 10.0           |                  | 108         | 80-120         | 0   | 20           |        |
| Source: H709095-01       Prepared & Analyzed: 10/07/07         Matrix Spike (HQJ0093-MS1)       Source: H709095-01       Prepared & Analyzed: 10/07/07         Antinony       8.00       mg/kg       10.0       ND       80       70-130         Antinony       8.00       mg/kg       10.0       ND       80       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Barium       87.6       "       100       2.6       85       70-130         Gadmium       9.80       "       10.0       ND       98       70-130         Chromium       8.80       "       10.0       ND       98       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Copper       10.1       "       10.0       0.40       97       70-130         Gront       138       "       100       48       90       70-130         Lead       9.30       "       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |        |                    |       | 10.0           |                  | 97          | 80-120         | 12  | 20           |        |
| Antimony       8.00       mg/kg       10.0       ND       80       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Barium       87.6       "       100       2.6       85       70-130         Beryllium       10.8       "       10.0       ND       108       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Chromium       8.80       "       10.0       ND       98       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Copper       10.1       "       10.0       0.40       97       70-130         Group       138       "       100       48       90       70-130         Lead       9.30       "       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |        |                    | u     |                |                  | 106         | 80-120         | 13  | 20           |        |
| Read       8.00       mg/kg       10.0       ND       80       70-130         Antimony       8.50       "       10.0       ND       85       70-130         Arsenic       8.50       "       10.0       ND       85       70-130         Barium       87.6       "       100       2.6       85       70-130         Beryllium       10.8       "       10.0       ND       108       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Chromium       8.80       "       10.0       ND       98       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Copper       10.1       "       10.0       0.40       97       70-130         ron       138       "       100       48       90       70-130         ead       9.30       "       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matuly Spiles (IIO 10003_MS1)    | Sour   | ce: H70909         | 5-01  | Prenared a     | & Analyzed       | 1: 10/07/07 | ı.             |     |              | •      |
| Arsenic8.50"10.0ND8570-130Barlum87.6"1002.68570-130Beryllium10.8"10.0ND10870-130Cadmium9.80"10.0ND9870-130Chromium8.80"10.0ND9170-130Cobalt9.10"10.0ND9170-130Copper10.1"10.0489070-130Lead9.30"10.00.309070-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · _ · _ · _ · _ · _ · _ · _ · _  |        |                    |       |                |                  |             |                |     |              |        |
| Barium       87.6       "       100       2.6       85       70-130         Beryllium       10.8       "       10.0       ND       108       70-130         Cadmium       9.80       "       10.0       ND       98       70-130         Chromium       8.80       "       10.0       0.20       86       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Copper       10.1       "       10.0       0.40       97       70-130         ron       138       "       100       48       90       70-130         Lead       9.30       "       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                |        |                    |       |                |                  | 85          | 70-130         |     |              |        |
| Martini       10.8       10.0       ND       108       70-130         Saryllium       9.80       10.0       ND       98       70-130         Chromium       8.80       10.0       0.20       86       70-130         Cobalt       9.10       10.0       ND       91       70-130         Copper       10.1       10.0       0.40       97       70-130         Lead       9.30       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |        |                    | 71    |                |                  |             |                |     |              |        |
| Cadmium       9.80       "       10.0       ND       98       70-130         Chromium       8.80       "       10.0       ND       91       70-130         Cobalt       9.10       "       10.0       ND       91       70-130         Copper       10.1       "       10.0       0.40       97       70-130         Grow       138       "       100       48       90       70-130         Lead       9.30       "       10.0       0.30       90       70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |        |                    | u     |                |                  |             |                |     |              |        |
| Chromium     8.80     "     10.0     0.20     86     70-130       Cobalt     9.10     "     10.0     ND     91     70-130       Copper     10.1     "     10.0     0.40     97     70-130       ron     138     "     100     48     90     70-130       Lead     9.30     "     10.0     0.30     90     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                |        |                    | H     |                |                  |             |                |     |              |        |
| Cobalt     9.10     "     10.0     ND     91     70-130       Copper     10.1     "     10.0     0.40     97     70-130       ron     138     "     100     48     90     70-130       Lead     9.30     "     10.0     0.30     90     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |        |                    |       |                |                  |             |                |     |              |        |
| Copper     10.1     "     10.0     0.40     97     70-130       ron     138     "     100     48     90     70-130       Lead     9.30     "     10.0     0.30     90     70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |        |                    | n     |                |                  |             |                |     |              |        |
| Inform         138         "         100         48         90         70-130           Lead         9.30         "         10.0         0.30         90         70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |        |                    | п.    |                |                  |             |                |     |              |        |
| Lead 9.30 " 10.0 0.30 90 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |        |                    | U     |                |                  |             |                |     |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |        |                    | U     |                |                  |             |                |     |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead                             | 9.50   |                    | a     | 10.0           | 22               | 91          | 70-130         |     |              |        |

Approved By

## @ITSOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | X A                 |
|----------------------|--------------------------------------------------------------------|---------------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | متداليته يستعدالينه |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.:     |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095             |

#### DTPA Extractable Metals - Quality Control

#### **Argon Laboratories**

| Analyte                 |             | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit                                  | Notes |
|-------------------------|-------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|-----------------------------------------------|-------|
| Batch HQJ0093 - DTPA    | Extractable |        |                    |       |                |                  | · <u> </u>  |                |     |                                               |       |
| Matrix Spike (HQJ0093-M | 181)        | Sou    | rce: H709095-0     | 1     | Prepared &     | z Analyzed       | l: 10/07/07 |                |     |                                               | ·     |
| Mercury                 | •           | 0.48   | · 11               | ng/kg | 0.500          | ND               | 96          | 70-130         |     |                                               |       |
| Molybdenum              | 1. A. A.    | 8,00   |                    | п     | 10.0           | ND               | 80          | 70-130         |     |                                               |       |
| Nickel                  |             | 8,40   |                    | н     | 10.0           | 0.30             | 81          | 70-130         |     |                                               |       |
| Selenium                |             | 10.1   |                    | U     | 10.0           | ND               | 101         | 70-130         |     |                                               |       |
| Silver                  |             | 8.20   |                    |       | 10.0           | ND               | 82          | 70-130         |     |                                               |       |
| Fhallium                | N           | 10.3   |                    | 14    | 10.0           | ND               | 103         | 70-130         |     |                                               |       |
| Vanadium                |             | 9.10   |                    | H     | 10.0           | 0.30             | 88          | 70-130         |     |                                               |       |
| Line                    | •           | 93.0   |                    | ц     | 100            | ND               | 93          | 70-130         |     |                                               |       |
| Matrix Spike Dup (HQJ00 | 93-MSD1)    | Sou    | rce: H709095-0     | 1     | Prepared 8     | k Analyzed       | l; 10/07/07 |                |     | <u>.                                     </u> |       |
| Antimony                |             | 8.90   |                    | ng/kg | 10.0           | ND               | 89          | 70-130         | 11  | 20                                            |       |
| Arsenic                 |             | 8.40   |                    | н     | 10.0           | ND               | 84          | 70-130         | 1   | 20                                            |       |
| Barium                  |             | 113    |                    | н     | 100            | 2.6              | 110         | 70-130         | 25  | 20                                            |       |
| Beryllium               |             | 10.8   |                    | 11    | 10.0           | ND               | 108         | 70-130         | 0   | 20                                            |       |
| Cadmium                 |             | 10.7   |                    | a     | 10,0           | ND               | 107         | 70-130         | 9   | 20                                            |       |
| Chromium                |             | 8.90   |                    | a     | 10.0           | 0.20             | 87          | 70-130         | 1   | 20                                            |       |
| Cobalt                  |             | 8.90   |                    | u     | 10,0           | ND               | 89          | 70-130         | 2   | 20                                            |       |
| Copper                  |             | 10.8   |                    | u     | 10,0           | 0.40             | 104         | 70-130         | 7   | 20                                            |       |
| ron                     |             | 140    |                    | U     | 100            | 48               | 92          | 70-130         | 1   | 20                                            |       |
| Lead                    |             | 10.3   |                    |       | 10.0           | 0,30             | 100         | 70-130         | 10  | 20                                            |       |
| Manganese               |             | 113    |                    | u     | 100            | 22               | 91          | 70-130         | 0   | 20                                            |       |
| vercury                 |             | 0.52   |                    | U     | 0.500          | ND               | 104         | 70-130         | 8   | 20                                            |       |
| folybdenum              |             | 8.20   |                    | н     | 10.0           | ND               | 82          | 70-130         | 2   | 20                                            |       |
| Vickel                  |             | 8.50   |                    | D     | 10.0           | 0.30             | 82          | 70-130         | 1   | 20                                            |       |
| Selenium                |             | 9.90   |                    | U     | 10.0           | ND               | 99          | 70-130         | 2   | 20                                            |       |
| lilver                  |             | 8.10   |                    | н -   | 10.0           | ND               | 81          | 70-130         | 1   | 20                                            |       |
| Fhallium                |             | 11.3   |                    | R.    | 10.0           | ND               | 113         | 70-130         | 9   | 20                                            |       |
| /anadium                | 1. A 1.     | 9.30   |                    | R     | 10.0           | 0.30             | 90          | 70-130         | 2   | 20                                            |       |
| Zinc                    |             | 112    |                    | μ     | 100            | ND               | 112         | 70-130         | 19  | 20                                            |       |

#### Approved $\mathbf{B}\mathbf{y}$

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

| ConAgra Foods Inc.    |        | Project Nur<br>Broingt N |            | ne]<br>nAgra Aerat | ad Rond          |           |                |         | Work Orde    | er No.: |
|-----------------------|--------|--------------------------|------------|--------------------|------------------|-----------|----------------|---------|--------------|---------|
| 554 S. Yosemite Ave.  |        | •                        |            | -                  | curona           |           |                |         |              |         |
| Oakdale, CA 95361     |        | Project Man              | ager:      |                    |                  |           |                |         | H7090        | 95      |
|                       |        | Metals                   | - Qualit   | y Control          |                  |           |                |         |              |         |
| Argon Laboratories    |        |                          |            |                    |                  |           |                |         |              |         |
| Analyte               | Result | Reporting<br>Limit       | Units      | Spike<br>Level     | Source<br>Result | %REC      | %REC<br>Limits | RPD     | RPD<br>Limit | Notes   |
| Batch HQJ0080 - 3050B |        |                          |            |                    |                  |           |                | <u></u> |              | ·       |
| Blank (HQJ0080-BLK1)  |        |                          |            | Prepared: 1        | 10/05/07         | Analyzed: | 10/06/07       |         |              |         |
| Antimony              | ND     | 2.0                      | mg/kg      |                    |                  |           |                |         |              |         |
| arsenic               | ND     | 1.0                      | н          |                    |                  |           |                |         |              |         |
| arium                 | ND     | 5.0                      | "          |                    |                  | ÷         |                |         |              |         |
| Beryllium             | ND     | 1.0                      | в          |                    |                  |           |                |         |              |         |
| Cadmium               | ND     | 1.0                      | U          |                    |                  |           |                |         |              |         |
| hromium               | ND     | 1.0                      | U          |                    |                  |           |                |         |              |         |
| Cobalt                | ND     | 1.0                      | u          |                    |                  |           |                |         |              |         |
| Copper                | ND     | 2.0                      | u          |                    |                  |           |                |         |              |         |
| ead                   | ND     | 1.0                      | 11         |                    |                  |           |                |         |              |         |
| <i>fercury</i>        | ND     | 0.1                      | н          |                    |                  |           |                |         |              |         |
| folybdenum            | ND     | 1.0                      | It         |                    |                  |           |                |         |              |         |
| lickel                | ND     | 1.0                      | D          |                    |                  |           |                |         |              |         |
| Selenium              | ND     | 1.0                      | н          |                    |                  |           |                |         |              |         |
| ilver                 | ND     | 1.0                      | н          |                    |                  |           |                |         |              |         |
| hallium               | ND     | 1.0                      | u          |                    |                  |           |                |         |              |         |
| Vanadium              | ND     | 1.0                      | u          |                    |                  |           |                |         |              |         |
| Zinc                  | ND     | 5.0                      | <b>1</b> 1 |                    |                  |           |                |         |              |         |

| LCS (HQJ0080-BS1) | ·    |         | Prepared: 10/0 | 5/07 Analyzed: 1 | 10/06/07 | ·       |
|-------------------|------|---------|----------------|------------------|----------|---------|
| Antimony          | 8,50 | mg/kg   | 10.0           | 85               | 80-120   |         |
| Arsenic           | 8,60 | IJ      | 10.0           | 86               | 80-120   |         |
| Barium            | 111  | u       | 100            | 111              | 80-120   |         |
| Beryllium         | 10.2 | ů.      | 10.0           | 102              | 80-120   |         |
| Cadmium           | 10.4 | a       | 10.0           | 104              | 80-120   |         |
| Chromium          | 9,00 | "       | 10.0           | 90               | 80-120   |         |
| Cobalt            | 8,20 | 11      | 10.0           | 82               | 80-120   |         |
| Copper            | 8,80 | н       | 10.0           | 88               | 80-120   |         |
| Lead              | 9.10 | н       | 10.0           | 91               | 80-120   |         |
| Mercury           | 0.48 | · · · · | 0.500          | 96               | 80-120   |         |
| Molybdenum        | 10.5 | . u     | 10.0           | 105              | 80-120   | · · · · |
| Nickel            | 8.70 | п       | 10.0           | 87               | 80-120   |         |
| Selenium          | 11.8 | и       | 10.0           | 118              | 80-120   |         |
| Silver            | 9.70 |         | 10.0           | 97               | 80-120   |         |
| Thallium          | 10.9 | ц       | 10.0           | 109              | 80-120   |         |
| Vanadium          | 8.60 | , n     | 10.0           | 86               | 80-120   |         |
| Zine              | 93.0 | 19      | 100            | 93               | 80-120   |         |

## @1300 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.Project Number: [none]Image: Image: Image | argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | I I             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ConAgra Foods Inc.   | Project Number: [none]                                             | - Miximum -     |
| Oakdale, CA     95361       Project Manager:     H709095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Oakdale, CA 95361    | Project Manager:                                                   | H709095         |

#### Metals - Quality Control

#### **Argon Laboratories**

| Amaluda                    | Result | Reporting<br>Limit Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD     | RPD<br>Limit | Notes  |
|----------------------------|--------|--------------------------|----------------|------------------|-----------|----------------|---------|--------------|--------|
| Analyte                    | Result |                          | Level          | Acoun            | 70KEC     | Linns          | <u></u> |              | 110103 |
| Batch HQJ0080 - 3050B      |        |                          |                |                  |           |                |         |              |        |
| LCS Dup (HQJ0080-BSD1)     |        |                          | Prepared:      | 10/05/07         | Analyzed: | 10/06/07       | +       |              |        |
| Antimony                   | 8.30   | mg/kg                    | 10.0           |                  | 83        | 80-120         | 2       | 20           |        |
| Arsenic                    | 8.30   | a                        | 10.0           |                  | 83        | 80-120         | 4       | 20           |        |
| Barium                     | 115    | U                        | 100            |                  | 115       | 80-120         | 4       | 20           |        |
| Beryllium                  | 11.3   | n                        | 10.0           |                  | 113       | 80-120         | 10      | 20           |        |
| Cadmium                    | 10.6   | n                        | 10.0           |                  | 106       | 80-120         | 2       | 20           |        |
| Chromium                   | 10.0   | II                       | 10.0           |                  | 100       | 80-120         | 11      | 20           |        |
| Cobalt                     | 8.80   |                          | 10.0           |                  | 88        | 80-120         | 7       | 20           |        |
| Copper                     | 8.50   | · U                      | 10.0           |                  | 85        | 80-120         | 3       | 20           |        |
| Lead                       | 9.00   | U                        | 10.0           |                  | 90        | 80-120         | 1       | 20           |        |
| Mercury                    | 0.60   | u                        | 0,500          |                  | 120       | 80-120         | 22      | 20           |        |
| Molybdenum                 | 10.3   | n                        | 10.0           |                  | 103       | 80-120         | 2       | 20           |        |
| Nickel                     | 8.20   | н                        | 10.0           |                  | 82        | 80-120         | 6       | 20           |        |
| Selenium                   | 10.4   | п                        | 10.0           |                  | 104       | 80-120         | 13      | 20           |        |
| Silver                     | 9.40   | п                        | 10.0           |                  | 94        | 80-120         | 3       | 20           |        |
| Thallium                   | 10.8   |                          | 10.0           |                  | 108       | 80-120         | 0.9     | 20           |        |
| Vanadium                   | 9.70   | u                        | 10.0           |                  | 97        | 80-120         | 12      | 20           |        |
| Zinc                       | 106    | U                        | 100            |                  | 106       | 80-120         | 13      | 20           |        |
| Matrix Spike (HQJ0080-MS1) | Sou    | rce: H710003-35          | Prepared:      | 10/05/07         | Analyzed: | 10/06/07       |         |              |        |
| Antimony                   | 8.00   | mg/kg                    | 10.0           | ND               | 80        | 70-130         |         |              |        |
| Arsenic                    | 11.6   | н                        | 10.0           | 3.1              | 85        | 70-130         |         |              |        |
| Barium                     | 131    | U                        | 100            | 46               | 85        | 70-130         |         |              |        |
| Beryllium                  | 10.8   | U                        | 10.0           | ND               | 108       | 70-130         |         |              |        |
| Cadmium                    | 9.80   | a                        | 10.0           | ND               | 98        | 70-130         |         |              |        |
| Chromium                   | 13.4   | a                        | 10.0           | 4.8              | 86        | 70-130         |         |              |        |
| Cobalt                     | 15.9   | . u                      | 10.0           | 6.8              | 91        | 70-130         |         |              |        |
| Copper                     | 12.1   | u                        | 10.0           | 2.4              | 97        | 70-130         |         |              |        |
| Lead                       | 14.0   | u                        | 10.0           | 5.6              | . 84      | 70-130         |         |              |        |
| Mercury                    | 0.48   | u                        | 0.500          | ND               | 96        | 70-130         |         |              |        |
| Molybdenum                 | 8.90   | U                        | · 10.0         | 0.90             | 80        | 70-130         |         |              |        |
| Nickel                     | 27.3   | ш                        | 10.0           | 19               | 83        | 70-130         |         |              |        |
| Selenium                   | 10.1   | u .                      | 10.0           | ND               | 101       | 70-130         |         |              |        |
| Silver                     | 8,20   | u                        | 10.0           | ND               | 82        | 70-130         |         |              |        |
| Thallium                   | 10,3   | u                        | 10.0           | ND               | 103       | 70-130         |         |              |        |
|                            |        |                          |                |                  | 1         |                |         |              |        |
| Vanadium                   | 15.4   | u                        | 10.0           | 6.6              | 88        | 70-130         |         |              | -      |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | I               |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: [none]                                             | and in mark     |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H709095         |
|                      | Metals - Quality Control                                           |                 |

### **Argon Laboratories**

| Analyte                         | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD . | RPD<br>Limit | Notes                      |
|---------------------------------|--------|--------------------|-------|----------------|------------------|-----------|----------------|-------|--------------|----------------------------|
| Batch HQJ0080 - 3050B           |        |                    |       |                |                  |           |                |       |              |                            |
| Matrix Spike Dup (HQJ0080-MSD1) | Sou    | irce: H710003      | 8-35  | Prepared:      | 10/05/07         | Analyzed: | 10/06/07       |       |              | <u> </u>                   |
| Antimony                        | 8.90   |                    | mg/kg | 10,0           | ND               | 89        | 70-130         | 11    | 20.          |                            |
| Arsenic                         | 11.5   |                    |       | 10,0           | 3.1              | 84        | 70-130         | 0.9   | 20           | +                          |
| Barium                          | 153    |                    |       | 100            | 46               | 107       | 70-130         | 15    | 20           |                            |
| Beryllium                       | 10.8   |                    | u     | 10,0           | ND               | 108       | 70-130         | 0     | 20           |                            |
| Cadmium                         | 10.7   | ,                  | ш÷    | 10.0           | ND               | 107       | 70-130         | 9     | 20           | 1990 (1997)<br>1990 (1997) |
| Chromium                        | 13.5   |                    |       | 10.0           | 4.8              | 87        | 70-130         | 0.7   | 20           |                            |
| Cobalt                          | 15.7   |                    |       | 10,0           | 6.8              | 89        | 70-130         | 1     | 20           |                            |
| Copper                          | 12.8   |                    | н     | 10.0           | 2.4              | 104       | 70-130         | 6     | 20           |                            |
| Lead                            | 15.9   |                    |       | 10.0           | 5.6              | 103       | 70-130         | 13    | 20           |                            |
| Mercury                         | 0.52   |                    | u     | 0.500          | ND               | 104       | 70-130         | 8     | 20           |                            |
| Molybdenum                      | 9,10   |                    | u     | 10.0           | 0.90             | 82        | 70-130         | 2     | 20           |                            |
| Nickel                          | 27.4   |                    | u     | 10.0           | 19               | 84        | 70-130         | 0.4   | 20           |                            |
| Selenium                        | 9.90   |                    | u     | 10.0           | ND               | 99        | 70-130         | 2     | 20           |                            |
| Silver                          | 8.10   |                    | u     | 10.0           | ND               | 81        | 70-130         | 1     | 20           |                            |
| Thallium                        | 11.3   |                    | u     | 10.0           | ND               | 113       | 70-130         | 9     | 20           |                            |
| Vanadium                        | 15,6   |                    | a     | 10.0           | 6.6              | 90        | 70-130         | 1     | 20           |                            |
| Zinc                            | 146    |                    | u     | 100            | 29               | 117       | 70-130         | 18    | 20           |                            |

Approved By Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Page 27 of 33

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |        | Project Number: [none]<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |       |                |                  |             |                |     | Work Order No.:<br>H709095 |       |  |  |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------------|-------|----------------|------------------|-------------|----------------|-----|----------------------------|-------|--|--|
|                                                                 |        |                                                                                  | -     | ality Cont     | rol              |             |                |     |                            |       |  |  |
| Argon Laboratories                                              |        |                                                                                  |       |                |                  |             |                |     | a.                         |       |  |  |
| Analyte                                                         | Result | Reporting<br>Limit                                                               | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit               | Notes |  |  |
| Batch HQJ0085 - General Prep                                    |        |                                                                                  |       |                |                  |             |                |     |                            |       |  |  |
| Blank (HQJ0085-BLK1)                                            | · .    |                                                                                  |       | Prepared a     | & Analyzed       | I: 10/05/07 |                |     |                            |       |  |  |
| hosphorous as P - Olsen Method                                  | ND     | 0,2                                                                              | mg/kg |                |                  |             |                |     |                            |       |  |  |
| hosphorous as P - Bray Method                                   | ND     | 0.2                                                                              | и     |                |                  |             |                |     |                            |       |  |  |
| CS (HQJ0085-BS1)                                                |        |                                                                                  |       | Prepared &     | & Analyzed       | i: 10/05/07 |                |     |                            |       |  |  |
| otal Phosphorous as P                                           | 10.0   |                                                                                  | mg/kg | 10.0           |                  | 100         | 80-120         |     |                            |       |  |  |
| .CS Dup (HQJ0085-BSD1)                                          |        |                                                                                  |       | Prepared &     | è Analyzeo       | l: 10/05/07 |                |     |                            |       |  |  |
| Total Phosphorous as P                                          | 10.2   |                                                                                  | mg/kg | 10.0           |                  | 102         | 80-120         | 2   | 20                         |       |  |  |

| Oakdale, CA 95361  | <br>Project Man<br>SMP Buffer |  | trol |  | <br>H70909 | 95 |
|--------------------|-------------------------------|--|------|--|------------|----|
| Argon Laboratories |                               |  |      |  |            |    |

#### Batch HQJ0098 - General Prep

| LCS (HQJ0098-BS1) |      |          | Prepared & | Analyzed: 10/10/07 |        | <br> |
|-------------------|------|----------|------------|--------------------|--------|------|
| pH                | 7.00 | pH Units | 7.00       | 100                | 95-105 |      |

Approved By

| ConAgra Foods Inc.<br>554 S, Yosemite Ave. | Project Number: [none]<br>Project Name: ConAgra Aerated Pond |            |            |        |  |      |  | Work Order No.: |    |  |
|--------------------------------------------|--------------------------------------------------------------|------------|------------|--------|--|------|--|-----------------|----|--|
| Oakdale, CA 95361                          | Project Man                                                  |            | -          |        |  |      |  | H7090           | 95 |  |
|                                            | <br>Soil Salini                                              | ity - Qual | lity Contr | ol     |  |      |  |                 |    |  |
| rgon Laboratories                          |                                                              |            |            |        |  |      |  |                 |    |  |
|                                            | Reporting                                                    |            | Spike      | Source |  | %REC |  | RPD             |    |  |

5.0

uS/cm

ND

Prepared & Analyzed: 10/10/07

Blank (HQJ0088-BLK1)

Specific conductance

Approved By

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |             | Project Number: [none]<br>Project Name: ConAgra Aerated Pond<br>Project Manager:<br>Total Kjeldahl Nitrogen by EPA 351.2 - Quality Control |         |                |                  |                    |                |     |              | Work Order No.:<br>H709095 |  |  |  |
|-----------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|------------------|--------------------|----------------|-----|--------------|----------------------------|--|--|--|
|                                                                 | Total Kjeld | lahl Nitroge                                                                                                                               | n by EP | A 351.2 - (    | Quality C        | ontrol             |                |     |              |                            |  |  |  |
| Argon Laboratories                                              |             |                                                                                                                                            |         |                |                  |                    |                |     |              |                            |  |  |  |
| Analyte                                                         | Result      | Reporting<br>Limit                                                                                                                         | Units   | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD | RPD<br>Limit | Notes                      |  |  |  |
| Batch HQJ0083 - General Prep                                    |             |                                                                                                                                            |         |                |                  |                    |                | ÷ . | · .          |                            |  |  |  |
| Blank (HQJ0083-BLK1)                                            |             |                                                                                                                                            |         | Prepared &     | & Analyzed       | 1: <u>10/05/07</u> | ·              |     |              | <u></u>                    |  |  |  |
| otal Kjeldahl Nitrogen                                          | ND          | 5.0                                                                                                                                        | mg/kg   |                |                  |                    |                |     |              |                            |  |  |  |
| LCS (HQJ0083-BS1)                                               |             |                                                                                                                                            |         | Prepared &     | & Analyzed       | 1: 10/05/07        | 1              |     | · .· .       | 19 <sup>1</sup>            |  |  |  |
| Fotal Kjeldahl Nitrogen                                         | 10.4        |                                                                                                                                            | mg/kg   | 10.0           |                  | 104                | 80-120         |     |              |                            |  |  |  |

| LCS Dup (HQJ0083-BSD1)  |      |       | Prepared & Analyze | ed: 10/05/0 | 7      |   |    |  |
|-------------------------|------|-------|--------------------|-------------|--------|---|----|--|
| Total Kjeldahl Nitrogen | 10.4 | mg/kg | 10.0               | 104         | 80-120 | 0 | 20 |  |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA: 95361 |        | Project Nu<br>Project N<br>Project Mar | Name: Co | onAgra Aera    | ted Pond         |             |                |     | Work Ord<br>H7090 |       |
|------------------------------------------------------------------|--------|----------------------------------------|----------|----------------|------------------|-------------|----------------|-----|-------------------|-------|
|                                                                  | Tot    | al Organic                             | Carbon   | - Quality (    | Control          |             |                |     |                   |       |
| Argon Laboratories                                               |        |                                        |          |                |                  |             |                |     |                   |       |
| Analyte                                                          | Result | Reporting<br>Limit                     | Units    | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit      | Notes |
| Batch HQJ0089 - General Prep                                     |        |                                        |          |                |                  |             |                |     |                   |       |
| Blank (HQJ0089-BLK1)                                             |        |                                        |          | Prepared &     | è Analyzeo       | l: 10/05/07 |                |     |                   |       |
| Fotal Organic Carbon                                             | ND     | 200                                    | mg/kg    | ;              |                  |             |                |     |                   |       |
| LCS (HQJ0089-BS1)                                                |        |                                        |          | Prepared &     | k Analyzed       | I: 10/05/07 |                |     |                   |       |
| Total Organic Carbon                                             | 8200   |                                        | mg/kg    | 8200           |                  | 100         | 70-130         |     |                   |       |
| LCS Dup (HQJ0089-BSD1)                                           |        |                                        |          | Prepared &     | k Analyzed       | 1: 10/05/07 |                |     |                   |       |
| Fotal Organic Carbon                                             | 8200   |                                        | mg/kg    | 8200           |                  | 100         | 70-130         | 0   | 20                |       |
| Matrix Spike (HQJ0089-MS1)                                       | Sou    | rce: H70909                            | 5-01     | Prepared &     | k Analyzed       | 1: 10/05/07 |                |     |                   |       |
| Total Organic Carbon                                             | 8600   |                                        | mg/kg    | 8200           | 1000             | 93          | 70-130         |     |                   |       |
| Matrix Spike Dup (HQJ0089-MSD1)                                  | Sou    | rce: H70909                            | 5-01     | Prepared &     | & Analyzed       | 1: 10/05/07 |                |     |                   |       |
| Total Organic Carbon                                             | 7910   |                                        | mg/kg    | 8200           | 1000             | 84          | 70-130         | 8   | 20                |       |

Approved By

| -    | r Foods Inc.<br>osemite Ave.<br>CA 95361 | Project Number: [none]<br>Project Name: ConAgra Aerated Pond<br>Project Manager: | Work Order No.:<br>H709095 |
|------|------------------------------------------|----------------------------------------------------------------------------------|----------------------------|
|      |                                          | Notes and Definitions                                                            |                            |
| P-01 | Conductivity result based on 1:10        | dilution of soil/sludge sample matrix.                                           |                            |
| DET  | Analyte DETECTED                         |                                                                                  |                            |
| ND   | Analyte NOT DETECTED at or above         | the reporting limit                                                              |                            |
| NR   | Not Reported                             |                                                                                  |                            |
| dry  | Sample results reported on a dry weigh   | t basis                                                                          |                            |

....

RPD Relative Percent Difference

# argon laboratories

08 November 2007

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

RE: ConAgra Aerated Pond Project Data

Enclosed are the results for sample(s) received on 10/26/07 12:00 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

2905 Railroad Avenue, Ceres, CA 95307 • Phone (209) 581-9280 • Fax (209) 581-9282 email: info@argonlabs.com

| Project No.                        |                  | Project ]             | Nam       | V<br>S | S                  | Project Name: CON 46 RA |            |                           |                    | Para                       | Parameters               | 2                               |                 |              |                           | Pag     | Page fof J.                            | R. S. S. Reportito           |           |
|------------------------------------|------------------|-----------------------|-----------|--------|--------------------|-------------------------|------------|---------------------------|--------------------|----------------------------|--------------------------|---------------------------------|-----------------|--------------|---------------------------|---------|----------------------------------------|------------------------------|-----------|
| 102-11                             | . c              | Acreted Pond Sediment | ond S     | cdim   | ent                |                         |            |                           | 100                |                            | рΗ,                      |                                 | ZN,             | C            |                           |         | -                                      |                              |           |
| Sempler (Signature)                | A                | (Print)<br>INAM       | GA (      | L'A    | MARCHAL            |                         |            |                           |                    |                            | EC,TDS                   | SA                              |                 | <u>4m 1</u>  | . · .                     |         |                                        | ConAgra and Dunn Env.        | a Eav.    |
| Sample<br>Identification<br>Number | Date             | Time                  | Water     | Soil   | Other              | npling<br>cation        | Containers | foliture<br>imge Capacity | N, Nitrate, TKN    | Alkalinity Suite           | <br>;TFS CLCa,Mg,        | R, Available P<br>Extractable K | Cr, Cu, As, Co, | 7 metals     | Remarks                   |         | _                                      | ,                            |           |
| Werd Road 28                       | 10/23/57         | P 9                   |           | ŀ      |                    | 10-Ac Pond              |            | 7                         | $F^{2}$            |                            | 12                       | 12                              | 7               | 17           | 3 N/L                     | 8858    |                                        |                              | •         |
| 0                                  | 10/52/01         | 1 1                   |           |        |                    | Sedener                 | -          | 5                         | 12                 | $\left \frac{2}{2}\right $ |                          | 17                              | 7               | 7            | 2                         | 8859    |                                        |                              |           |
| 1-31                               | 12               | (0: ED                |           |        | 1                  | Sedenat                 | 1/         | 11                        | 1                  | ~                          | 12                       |                                 | 4               | 5            | DTPZAG                    | Se Godt | DTP And take due to AM 17 Total Metals | s South State To             |           |
| \$2                                | 10/23/17         | i0:4p                 |           |        |                    | Sedwert                 | / (        | 1                         | 16                 | 2                          | 1                        | 1                               | 14              | 7            | 71886                     | 861     | )1                                     | Mr. Jeff Schultz             | 17        |
| _ \                                | · / N · · ·      | 1): <sub>(0</sub>     |           |        | X                  | k<br>L                  | 1 1        | $\overline{\langle}$      | 40                 | 1 -                        | 2                        | 5                               | 11              | 7            | 71886                     | 63      |                                        | ConAgra Foods, Inc           | lnc       |
| NP-47                              | Ш                | c <u>c</u> :11        |           |        | X                  | 4                       | Z          | 16                        | 16                 | 4                          | 1                        | 1                               | 12              | 7            | 2188                      | 63      |                                        | 554 S. Yosemite Way          | Way       |
| 27-48                              | 11               | 1150                  |           |        | X                  | . 64                    | 7          |                           | 2-1                | 4                          | 1                        | 1                               | ン               | 7            | 3816-                     | 844     |                                        | Oakdale CA, 95361            | 361       |
| MP-53                              | Ч                | 12:27                 |           |        | X                  | ~                       | - 64       | 1                         | 5                  | 7                          | 1                        | 12                              | 17              | 7            | 316                       | 865     |                                        |                              |           |
| NP-59                              | 11               | h:21                  |           |        | $\mathbf{\dot{z}}$ |                         | WA.        |                           | 1                  | 1                          | 7                        | 7                               | 7               | 7            | 21/2 -                    | 86      |                                        | <b></b>                      |           |
| 1439-66                            | 11               | 13:20                 |           |        | X                  | ار                      | ×          | 5                         | 1                  | 1                          | 4                        | 17                              | 7               | 7            | - 7/8,                    | 8867    |                                        | States - Volumento           |           |
| WP-64                              | - 11             | 13:51                 |           |        |                    | ~                       | X          | 5                         | 7                  | 17                         | 1                        | 1                               | 1               | 2            | 216                       | 8 868   |                                        | S Dunn                       |           |
| WP-Ce5                             | 11               | 13.30                 |           |        | 5                  | 61                      | *          | ·                         | 40                 | 5                          | 0                        | <u>ک</u>                        | 7.              | 7            | 7189.                     | ×69     |                                        | ENVIRONMENTAL, INC           |           |
| WP-66                              | ı)               | ly 244                |           |        | 3                  | 1)                      | -          | 11                        |                    | >                          |                          | >                               | >               | ,<br>,<br>,  | 8 8 1/2                   | 02,     |                                        | 5060 Robert J. Matthews, # 2 | ຣ,#2<br>ເ |
| 1                                  | 11               | \$(:ر)                |           |        | X                  | 11                      | 1          | $\frac{1}{2}$             | 2                  | 7                          | <u>~</u>                 | 2                               | 2               | /            | 9118                      | 1281    | •                                      | 516-941-3850 Phone           | 8         |
| WP - 72                            | Ч                | סד: א                 |           |        | X                  | ( i                     | )<br>:     | 1                         | / v                | 1                          | $\overline{\mathcal{F}}$ | 3                               | >               | $\mathbf{r}$ | 7198                      | 72      |                                        | 916-941-3860 Fax             |           |
|                                    |                  | •                     |           |        |                    | ) <b></b>               |            |                           |                    |                            |                          |                                 |                 |              |                           |         |                                        |                              |           |
|                                    |                  |                       |           |        |                    |                         |            | ┠╼╾┦                      | $\left  - \right $ | ┣ │                        |                          |                                 |                 |              |                           |         |                                        |                              |           |
|                                    | ,                |                       |           |        |                    |                         |            |                           |                    |                            |                          |                                 |                 |              |                           | 0       |                                        |                              |           |
| Relinquished By:                   | (Signature)      |                       | Date/Time |        | 101                | C0/62/                  | 2          | 91019                     |                    |                            | 8 J                      | Received By                     |                 | X            | Contraction of the second | R       |                                        | Date/Time                    |           |
| 1 2 2 2                            | MAX              | (Print)               | Company   | ĥ      | Ø                  | Dann EM                 |            |                           |                    |                            |                          |                                 |                 |              |                           |         | )                                      | Company<br>(Print)           |           |
| Relinquisbod By:                   | (Signature) / 1/ | 4.                    | Deto/Timo |        |                    |                         |            |                           |                    |                            |                          | Continue By                     | , Z             | 10           | formed f                  | Turi    |                                        | 10/26/07 16                  | 0, 00     |
|                                    |                  | (Print)               | Company   | eny    |                    |                         |            |                           |                    |                            |                          |                                 |                 |              |                           |         | *                                      | Complany<br>(Print)          |           |
| Relinquished By:                   | (Signature)      |                       | Date/Time | j      |                    |                         |            |                           |                    |                            | Roce                     | Roceived By:                    |                 |              | (Signaturo)               |         |                                        | Date/Time                    |           |
|                                    |                  |                       | Company   | ĥ      |                    |                         |            |                           |                    |                            | Ļ                        |                                 |                 |              | ŀ                         |         |                                        | Сощрану                      |           |

# Argon Laboratories Sample Receipt Checklist

| Client Name:         | ConAgra             |            |             |        |          | Date & Time Received: 10/26                               | 07 12:00 |
|----------------------|---------------------|------------|-------------|--------|----------|-----------------------------------------------------------|----------|
| Project Name:        | Aerated Pond S      | Sedim      | ent         |        |          | Client Project Number:                                    | 102-11   |
| Received By:         | AH                  |            |             | Mat    | rix:     | Water Soil Sludge                                         | <b>v</b> |
| Sample Carrier:      | Client 🗸            | Lab        | oratory     |        | Fed Ex   | UPS Other                                                 | -        |
| Argon Labs Projec    | Number:             | <u>H71</u> | <u>0050</u> |        |          |                                                           |          |
| Shipper Container in | good condition?     |            |             |        |          | Samples received in proper containers? Yes 🔄              | No 🗌     |
|                      | N/A                 | Yes        | 7           | No     |          | Samples received intact? Yes 🔽                            | No 📋     |
| Samples received un  | der refrigeration?  | Yes        | 7           | No     |          | Sufficient sample volume for requested tests? Yes         | No 🗌     |
| Chain of custody pre | sent?               | Yes        |             | No     |          | Samples received within holding time? Yes                 | No 🗔     |
| Chain of Custody sig | ned by all parties? | Yes        | 7           | No     |          | Do samples contain proper preservative?<br>N/A [2] Yes [] | No 🗌     |
| Chain of Custody ma  | tches all sample fa | bels?      |             |        |          | Do VOA vials contain zero headspace?                      |          |
|                      |                     | Yes        | <b>·</b>    | No     |          | (None submitted 🗹 ) Yes 🗌                                 | No 📄     |
|                      | ANY "N              | ło" RI     | SPONSI      | E MUST | BE DETA  | LED IN THE COMMENTS SECTION BELOW                         |          |
| ,                    |                     |            |             |        |          |                                                           |          |
| Date Client Contac   | ted:                |            |             |        | Pe       | on Contacted:                                             |          |
| Contacted By:        |                     |            |             |        | Subject: | ,,,,,,                                                    |          |
| Comments:            |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
| Action Taken:        |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
|                      |                     |            | A           | DDITIO | NAL TES  | S) REQUEST / OTHER                                        |          |
| Contacted By:        |                     |            |             |        | _        | Date: Time:                                               |          |
| Call Received By:    |                     |            |             |        |          |                                                           |          |
| Comments:            |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           |          |
|                      |                     |            |             |        |          |                                                           | . i.     |
|                      |                     |            |             |        |          |                                                           | :        |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |                      | Project       | umber: 102-11<br>Name: ConAgra Ae<br>anager: |        |                | Work Order No.:<br>H710050 |
|-----------------------------------------------------------------|----------------------|---------------|----------------------------------------------|--------|----------------|----------------------------|
|                                                                 | 1. 1. <sup>1</sup> . | ANALYTICAL RE | EPORT FOR SAM                                | PLES   | · · ·          |                            |
| Sample ID                                                       |                      |               | Laboratory ID                                | Matrix | Date Sampled   | Date Received              |
| WP-28                                                           |                      |               | H710050-01                                   | Sludge | 10/23/07 09:30 | 10/26/07 12:00             |
| WP-30                                                           |                      |               | H710050-02                                   | Sludge | 10/23/07 09;50 | 10/26/07 12:00             |
| WP-31                                                           |                      |               | H710050-03                                   | Sludge | 10/23/07 10:20 | 10/26/07 12:00             |
| WP-32                                                           |                      |               | H710050-04                                   | Sludge | 10/23/07 10:40 | 10/26/07 12:00             |
| WP-43                                                           |                      |               | H710050-05                                   | Sludge | 10/23/07 11:10 | 10/26/07 12:00             |
| WP-47                                                           |                      |               | H710050-06                                   | Sludge | 10/23/07 11:30 | 10/26/07 12:00             |
| WP-48                                                           |                      |               | H <b>7</b> 10050-07                          | Sludge | 10/23/07 11:50 | 10/26/07 12:00             |
| WP-53                                                           |                      |               | H710050-08                                   | Sludge | 10/23/07 12:20 | 10/26/07 12:00             |
| WP-59                                                           |                      |               | H710050-09                                   | Sludge | 10/23/07 12:40 | 10/26/07 12:00             |
| WP-61                                                           | . ·                  |               | H710050-10                                   | Sludge | 10/23/07 13:00 | 10/26/07 12:00             |
| WP-64                                                           |                      |               | H710050-11                                   | Sludge | 10/23/07 13:15 | 10/26/07 12:00             |
| WP-65                                                           |                      |               | H710050-12                                   | Sludge | 10/23/07 13:30 | 10/26/07 12:00             |
| WP-66                                                           |                      |               | H710050-13                                   | Sludge | 10/23/07 14:44 | 10/26/07 12:00             |
| WP-67                                                           |                      |               | H710050-14                                   | Sludge | 10/23/07 15:18 | 10/26/07 12:00             |
| WP-72                                                           |                      |               | H710050-15                                   | Sludge | 10/23/07 15:20 | 10/26/07 12:00             |

## 

| ConAgra Foods Inc.   | Project Number: 102-11             | xullin_ull      |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
|                      | A Brolinity                        |                 |

#### Alkalinity

|                           | <b></b>                    | Reporting         | T Tuite  | Dilution |   | Analyzed  | Method     | Notes  |
|---------------------------|----------------------------|-------------------|----------|----------|---|-----------|------------|--------|
| Analyte                   | Result                     | Limit             | Units    | Diluton  |   | Allalyzeu | IVICUIUU   | 110102 |
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 R | leceived: 26-Oct  | 07 12:00 |          |   |           |            |        |
| Carbonate Alkalinity      | ND                         | 5.0               | mg/kg    | a (1     |   | 30-Oct-07 | SM2320     |        |
| Bicarbonate Alkalinity    | 120                        | 5.0               | н        | н        |   | n         | 11 ·       | 1. T.  |
| Hydroxide Alkalinity      | ND                         | 5.0               | н        | н        |   | n         | 11         |        |
| Totai Alkalinity          | 120                        | 10                | n        | н        |   | n         | 11         |        |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 R | leceived: 26-Oct  | 07 12:00 |          | 1 |           | -          |        |
| Carbonate Alkalinity      | ND                         | 5.0               | mg/kg    | 1        |   | 30-Oct-07 | SM2320     |        |
| Bicarbonate Alkalínity    | 92                         | 5.0               | n        | n        |   | n         | μ          |        |
| Hydroxide Alkalinity      | ND                         | 5.0               | n        | n        |   | н         | 11         |        |
| Total Alkalinity          | 92                         | 10                | в        | 11       |   | И         | 11         |        |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 R | leceived: 26-Oct  | 07 12:00 |          |   |           |            | •      |
| Carbonate Alkalinity      | ND                         | 5.0               | mg/kg    | 1        |   | 30-Oct-07 | SM2320     | 1      |
| Bicarbonate Alkalinity    | 140                        | 5.0               | 11       | п        |   | n         | 11         |        |
| Hydroxide Alkalinity      | ND                         | 5.0               | 11       | п        |   | и         | ม          |        |
| Total Alkalinity          | 140                        | 10                | "        | n        |   | н         | 11         |        |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 R | leceived: 26-Oct- | 07 12:00 |          | 1 | ۰.        | ÷          |        |
| Carbonate Alkalinity      | ND                         | 5.0               | mg/kg    | 1        |   | 30-Oct-07 | SM2320     |        |
| Bicarbonate Alkalinity    | 290                        | 5.0               | n        | 11       |   |           | н          |        |
| Hydroxide Alkalinity      | ND                         | 5.0               | н        | · •      |   | и         | <b>u</b> . | :      |
| Total Alkalinity          | 290                        | 10                | н        | н        |   | н         | u          |        |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 R | leceived: 26-Oct- | 07 12:00 | · *.     |   |           |            |        |
| Carbonate Alkalinity      | ND                         | 5.0               | mg/kg    | 1        |   | 30-Oct-07 | SM2320     |        |
| Bicarbonate Alkalinity    | 290                        | 5.0               | и        |          |   | u         | u          |        |
| Hydroxide Alkalinity      | ND                         | 5.0               | н        | и        |   | ม         | u          |        |
| Total Alkalinity          | 290                        | 10                | I        | и        |   | น         | u          |        |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

k

### appratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

|                      |                                    | K K.                   |
|----------------------|------------------------------------|------------------------|
| ConAgra Foods Inc.   | Project Number: 102-11             | and in a second second |
| 554 S. Yosemite Ave. | Project Name: ConAgra Acrated Pond | Work Order No.:        |
| Oakdale, CA 95361    | Project Manager:                   | H710050                |

#### Alkalinity

| Analyte                   | Result                   | Reporting<br>Limit | Units              | Dilution |   | Analyzed          | Method                                 | Notes |
|---------------------------|--------------------------|--------------------|--------------------|----------|---|-------------------|----------------------------------------|-------|
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct   | -07 12:00          | ·        |   |                   |                                        |       |
| Carbonate Alkalinity      | ND                       | 5.0                | mg/kg              | 1        |   | 30-Oct-07         | SM2320                                 |       |
| Bicarbonate Alkalinity    | 210                      | 5.0                | н                  | n        |   | . П               | Ħ                                      |       |
| Hydroxide Alkalinity      | ND                       | 5.0                | н                  | н        |   | п                 | 11                                     |       |
| Total Alkalinity          | 210                      | 10                 | "                  | "        |   | n                 | น                                      | 1     |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct   | -07 12:00          |          |   | s <u>i</u> tes es | ан сайтана<br>ал сайтана<br>ал сайтана |       |
| Carbonate Alkalinity      | ND                       | 5.0                | mg/kg              | 1        |   | 30-Oct-07         | SM2320                                 |       |
| Bicarbonate Alkalinity    | 270                      | 5.0                | н                  | 11       |   | и                 | 51                                     | :     |
| Hydroxide Alkalinity      | ND                       | 5.0                | n                  | . "      |   | 11                | u                                      |       |
| Total Alkalinity          | 270                      | 10                 | n                  | "        |   | 19                | u                                      |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct   | -07 12:00          |          |   |                   |                                        | τ.,   |
| Carbonate Alkalinity      | ND                       | 5.0                | mg/kg              | 1        |   | 30-Oct-07         | SM2320                                 |       |
| Bicarbonate Alkalinity    | 230                      | 5.0                | n                  | в        |   | n                 | 51                                     | 1.14  |
| Hydroxide Alkalinity      | ND                       | 5.0                | n                  | ۳.       |   | n                 | si                                     |       |
| Total Alkalinity          | 230                      | 10                 | "                  | n        |   | "                 | n                                      | ,     |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct   | -07 12:00          |          |   | <u>.</u> .        |                                        |       |
| Carbonate Alkalinity      | ND                       | 5,0                | mg/kg              | 1        |   | 30-Oct-07         | SM2320                                 |       |
| Bicarbonate Alkalinity    | 310                      | 5.0                | н                  | n        |   | n                 | "                                      |       |
| Hydroxide Alkalinity      | ND                       | 5.0                | n                  | . 0      |   | n                 | u                                      |       |
| Total Alkalinity          | 310                      | 10                 | n                  | n        | - | 11                | u                                      | ÷ .   |
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-Oct   | -07 1 <b>2:</b> 00 |          |   |                   | · .                                    |       |
| Carbonate Alkalinity      | ND                       | 5.0                | mg/kg              | . 1      |   | 30-Oct-07         | SM2320                                 | • .   |
| Bicarbonate Alkalinity    | 160                      | 5.0                | n                  | п        |   | п                 | u                                      | . •   |
| Hydroxide Alkalinity      | ND                       | 5.0                |                    | 'n       |   | n                 | ч                                      |       |
| Total Alkalinity          | 160                      | 10                 |                    | . 0      |   | н                 | 11                                     | · .   |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

l

Â

## @ITSIOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)58 | 1-9282 A _       |
|----------------------|--------------------------------------------------------------|------------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                       | sal and a second |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                           | Work Order No.:  |
| Oakdale, CA 95361    | Project Manager:                                             | H710050          |

#### Alkalinity

|                           |                            |                    |                    |          | ~        |           |        |       |
|---------------------------|----------------------------|--------------------|--------------------|----------|----------|-----------|--------|-------|
| Analyte                   | Result                     | Reporting<br>Limit | Units              | Dilution |          | Analyzed  | Method | Notes |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 R | eceived: 26-Oct-   | 07 12:00           |          |          |           |        |       |
| Carbonate Alkalinity      | ND                         | 5.0                | mg/kg              | 1        | <u> </u> | 30-Oct-07 | SM2320 |       |
| Bicarbonate Alkalinity    | 56                         | 5,0                | н                  | 11       |          |           | н.     |       |
| Hydroxide Alkalinity      | ND                         | 5.0                |                    | ห        |          |           | u      |       |
| Total Alkalinity          | 56                         | 10                 | a                  | u        |          | u         | U      |       |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 R | eceived: 26-Oct-   | -07 1 <b>2:</b> 00 |          |          |           |        |       |
| Carbonate Alkalinity      | ND                         | 5.0                | mg/kg              | 1        |          | 30-Oct-07 | SM2320 |       |
| Bicarbonate Alkalinity    | 170                        | 5.0                | u                  | 11       |          | 0         | 11     |       |
| Hydroxide Alkalinity      | ND                         | 5.0                | н                  | · 11     |          | u         | 11 ·   | ` : ` |
| Total Alkalinity          | 170                        | 10                 | u                  | 11       |          | 1         | 11     |       |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 R | eceived: 26-Oct-   | 07 12:00           |          |          |           |        |       |
| Carbonate Alkalinity      | ND                         | 5.0                | mg/kg              | 1        |          | 30-Oct-07 | SM2320 |       |
| Bicarbonate Alkalinity    | 230                        | 5.0                | ų                  |          |          | 11        | . 11   |       |
| Hydroxide Alkalinity      | ND                         | 5.0                | H                  | . "      |          | и.        | м      |       |
| Total Alkalinity          | 230                        | 10                 | 1                  | и        |          | н         | н      | · · · |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 R | eceived: 26-Oct-   | -07 12:00          |          |          |           |        |       |
| Carbonate Alkalinity      | ND                         | 5.0                | mg/kg              | 1        |          | 30-Oct-07 | SM2320 |       |
| Bicarbonate Alkalinity    | 160                        | 5.0                | 11                 | 15       |          | 17        | п      |       |
| Hydroxide Alkalinity      | ND                         | 5.0                | 11                 | 17       |          | n         | н      |       |
| Total Alkalinity          | 160                        | 10                 | พ                  | н        |          | n         | н      |       |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 R | leceived: 26-Oct   | -07 12:00          |          |          |           |        | •     |
| Carbonate Alkalinity      | ND                         | 5.0                | mg/kg              | L        |          | 30-Oct-07 | SM2320 |       |
| Bicarbonate Alkalinity    | 98                         | 5.0                | в                  | 'n       |          | 0         | u      |       |
| Hydroxide Alkalinity      | ND                         | 5.0                | P                  | U        |          | п         | ч      |       |
| Total Alkalinity          | 98                         | 10                 | H.                 | u        |          | н         | 11     |       |

Approved By

# ConAgra Foods Inc. Project Number: 102-11 554 S. Yosemite Ave. Project Name: ConAgra Aerated Pond Oakdale, CA 95361 Project Manager: H710050

#### Anions by Ion Chromatography - EPA Method 300.0

| Analyte                   | Result                       | Reporting<br>Limit | Units             | Dilution | ·   | Analyzed       | Method         | Note |
|---------------------------|------------------------------|--------------------|-------------------|----------|-----|----------------|----------------|------|
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 Rec | eived: 26-Oct-     | 07 12:00          |          |     |                | · · · ·        |      |
| Chloride<br>Nitrate       | 94<br>4.7                    | 10<br>1.0          | mg/kg             | 1        |     | 05-Nov-07      | EPA 300.0      |      |
|                           | Sampled: 23-Oct-07 09:50 Rec |                    | 07 12:00          |          |     |                |                |      |
| Chloride<br>Nitrate       | 86<br>2.8                    | 10<br>1.0          | mg/kg             | 1<br>    |     | 05-Nov-07<br>" | EPA 300.0      |      |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 Rec | eived: 26-Oct-     | 07 12:00          |          |     |                |                |      |
| Chloride<br>Nitrate       | 57<br>ND                     | 10<br>1.0          | mg/kg<br>"        | 1<br>"   |     | 05-Nov-07<br>" | EPA 300.0<br>" | -    |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 Rec | eived: 26-Oct-     | 07 12:00          |          |     |                | · .            |      |
| Chloride<br>Nitrate       | 88<br>2.9                    | 10<br>1.0          | mg/kg             | 1<br>"   |     | 05-Nov-07      | EPA 300.0      |      |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 Rec | eived: 26-Oct-     | 07 12:00          |          |     |                |                |      |
| Chloride<br>Nitrate       | 88<br>1.9                    | 10<br>1.0          | mg/kg             | 1        |     | 05-Nov-07<br>" | EPA 300.0      |      |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 Rec | eived: 26-Oct-     | 07 12:00          |          |     |                |                |      |
| Chloride<br>Nitrate       | 47<br>2.2                    | 10<br>1.0          | mg/kg             | 1        |     | 05-Nov-07<br>" | EPA 300.0<br>" |      |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 Rec | eived: 26-Oct-     | 07 1 <b>2:</b> 00 |          | · . |                | ÷              |      |
| Chloride<br>Nitrate       | 63<br>1.6                    | 10<br>1.0          | mg/kg             | 1<br>1   |     | 05-Nov-07<br>" | EPA 300.0      |      |

Approved By

# ConAgra Foods Inc. Project Number: 102-11 554 S. Yosemite Ave. Project Name: ConAgra Aerated Pond Oakdale, CA 95361 Project Manager: H710050

#### Anions by Ion Chromatography - EPA Method 300.0

|                           |                              |                    |                   |           | <br>               |           |                                              |
|---------------------------|------------------------------|--------------------|-------------------|-----------|--------------------|-----------|----------------------------------------------|
| Analyte                   | Result                       | Reporting<br>Limit | Units             | Dilution  | Analyzed           | Method    | Note                                         |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 Red | ceived: 26-Oct-    | 07 12:00          |           |                    |           |                                              |
| Chloride<br>Nitrate       | 95<br>1.9                    | 10<br>1.0          | mg/kg<br>"        | 1<br>. n. | <br>05-Nov-07<br>" | EPA 300.0 |                                              |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 Rec | ceived: 26-Oct-    | 07 12:00          |           | <br>               |           |                                              |
| Chloride<br>Nitrate       | 93<br>3.2                    | 10<br>1.0          | mg/kg             | 1         | 05-Nov-07<br>"     | EPA 300.0 |                                              |
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 Red | eived: 26-Oct-     | 07 1 <b>2:</b> 00 |           | <br>               |           | <u>    .                                </u> |
| Chloride<br>Nitrate       | 55<br>2,2                    | 10<br>1.0          | mg/kg             | 1         | 05-Nov-07<br>"     | EPA 300.0 |                                              |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 Rec | eived: 26-Oct-     | 07 12:00          |           | <br>               |           |                                              |
| Chloride<br>Nitrate       | 91<br>3.0                    | 10<br>1.0          | mg/kg             | 1<br>1    | <br>05-Nov-07<br>" | EPA 300.0 |                                              |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 Rec | ceived: 26-Oct-    | 07 12:00          |           | <br>               |           |                                              |
| Chloride<br>Nitrate       | 75<br>2.0                    | 10<br>1.0          | mg/kg             | 1         | 05-Nov-07<br>"     | EPA 300.0 |                                              |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 Rec | ceived: 26-Oct     | 07 12:00          |           |                    |           |                                              |
| Chloride<br>Nitrate       | 88<br>2.0                    | 10<br>1.0          | mg/kg<br>"        | 1         | 05-Nov-07<br>"     | EPA 300.0 |                                              |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 Rec | ceived: 26-Oct     | 07 12:00          |           | <br>               |           |                                              |
| Chloride<br>Nitrate       | 110<br>1.5                   | 10<br>1.0          | mg/kg             | 1         | 05-Nov-07<br>"     | EPA 300.0 |                                              |

Approved By

## @ 305 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

#### Reporting Method Notes Analyte Result Limit Units Dilution Analyzed WP-72 (H710050-15) Sludge Sampled: 23-Oct-07 15:20 Received: 26-Oct-07 12:00 05-Nov-07 66 10 EPA 300.0 Chloride mg/kg 1 7.1 11 1.0 11 н н Nitrate

Approved By

## الكَتْرَيْنَ المُحْدَمَة المُحْدَة (209) SRailroad Ave. Ceres, CA 95307 (209) SR1-9280 Fax (209) SR1-9282 والت

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | \ \ \           |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and in male     |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050         |
|                      | Cation Exchange Capacity                                           |                 |

| Cation Exchange Capacity<br>WP-30 (H710050-02) Sludge Sa<br>Cation Exchange Capacity<br>WP-31 (H710050-03) Sludge Sa<br>Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa | Result<br>ampled: 23-Oct-07 09:30<br>90<br>ampled: 23-Oct-07 09:50<br>80<br>ampled: 23-Oct-07 10:20<br>80 | Received: 26-Oct<br>2.0<br>Received: 26-Oct<br>2.0 | meq/100 g<br>-07 12:00<br>meq/100 g | Dilution<br>1 | Analyzed  | Method  | Notes |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------|---------------|-----------|---------|-------|
| Cation Exchange Capacity<br>WP-30 (H710050-02) Sludge Sa<br>Cation Exchange Capacity<br>WP-31 (H710050-03) Sludge Sa<br>Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa | 90<br>ampled: 23-Oct-07 09:50<br>80<br>ampled: 23-Oct-07 10:20                                            | 2.0<br>Received: 26-Oct<br>2.0                     | meq/100 g<br>-07 12:00<br>meq/100 g |               | 07-Nov-07 |         |       |
| WP-30 (H710050-02) Sludge Sa<br>Cation Exchange Capacity<br>WP-31 (H710050-03) Sludge Sa<br>Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa                             | ampled: 23-Oct-07 09:50<br>80<br>ampled: 23-Oct-07 10:20                                                  | Received: 26-Oct                                   | -07 12:00<br>meq/100 g              |               | 07-Nov-07 |         |       |
| Cation Exchange Capacity<br>WP-31 (H710050-03) Sludge Sa<br>Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa                                                             | 80<br>ampled: 23-Oct-07 10:20                                                                             | 2.0                                                | meq/100 g                           | 1             |           |         |       |
| WP-31 (H710050-03) Sludge Sa<br>Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa                                                                                         | ampled: 23-Oct-07 10:20                                                                                   |                                                    | • •                                 | 1             |           |         |       |
| Cation Exchange Capacity<br>WP-32 (H710050-04) Sludge Sa                                                                                                                         |                                                                                                           | Received: 26-Oct                                   |                                     |               | 07-Nov-07 |         |       |
| WP-32 (H710050-04) Sludge Sa                                                                                                                                                     | 80                                                                                                        |                                                    | -07 12:00                           |               |           | •       |       |
|                                                                                                                                                                                  |                                                                                                           | 2.0                                                | meq/100 g                           | 1 ·           | 07-Nov-07 | <b></b> |       |
|                                                                                                                                                                                  | ampled: 23-Oct-07 10:40                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           | ,       |       |
| Cation Exchange Capacity                                                                                                                                                         | 60                                                                                                        | 2.0                                                | meq/100 g                           | - 1           | 07-Nov-07 | ••••    |       |
| WP-43 (H710050-05) Sludge Sa                                                                                                                                                     | ampled: 23-Oct-07 11:10                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           |         |       |
| Cation Exchange Capacity                                                                                                                                                         | 60                                                                                                        | 2.0                                                | meq/100 g                           | 1             | 07-Nov-07 | ·       |       |
| WP-47 (H710050-06) Sludge Sa                                                                                                                                                     | ampled: 23-Oct-07 11:30                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           |         |       |
| Cation Exchange Capacity                                                                                                                                                         | 70                                                                                                        | 2.0                                                | meq/100 g                           | 1             | 07-Nov-07 |         |       |
| WP-48 (H710050-07) Sludge Sa                                                                                                                                                     | ampled: 23-Oct-07 11:50                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           |         |       |
| Cation Exchange Capacity                                                                                                                                                         | 60                                                                                                        | 2.0                                                | meq/100 g                           | 1             | 07-Nov-07 |         |       |
| WP-53 (H710050-08) Sludge Sa                                                                                                                                                     | ampled: 23-Oct-07 12:20                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           |         |       |
| Cation Exchange Capacity                                                                                                                                                         | 50                                                                                                        | 2.0                                                | meq/100 g                           | 1             | 07-Nov-07 |         |       |
| WP-59 (H710050-09) Sludge Sa                                                                                                                                                     | ampled: 23-Oct-07 12:40                                                                                   | Received: 26-Oct                                   | -07 12:00                           |               |           |         |       |
| Cation Exchange Capacity                                                                                                                                                         | 70                                                                                                        | 2.0                                                | meq/100 g                           | 1             | 07-Nov-07 |         |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## الله المعادية (209)581-9280 Fax (209)581-9280 Fax (209)581-9282 المالي المحادية المحادية (209)581-9282 المحادية المحا

| ConAgra Foods Inc.   | Project Number: 102-11             | - Harris Marine |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Acrated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
|                      | Cation Exchange Capacity           |                 |

#### Reporting Method Notes Dilution Analyte Result Limit Units Analyzed Sampled: 23-Oct-07 13:00 Received: 26-Oct-07 12:00 WP-61 (H710050-10) Sludge 50 1 07-Nov-07 **Cation Exchange Capacity** 2.0 meq/100 g -----WP-64 (H710050-11) Sludge Sampled: 23-Oct-07 13:15 Received: 26-Oct-07 12:00 60 2.0 meq/100 g 1 07-Nov-07 ..... **Cation Exchange Capacity** WP-65 (H710050-12) Sludge Sampled: 23-Oct-07 13:30 Received: 26-Oct-07 12:00 -----60 2.0 mcq/100 g 1 07-Nov-07 **Cation Exchange Capacity** WP-66 (H710050-13) Sludge Sampled: 23-Oct-07 14:44 Received: 26-Oct-07 12:00 07-Nov-07 50 ł 2.0 meq/100 g **Cation Exchange Capacity** -----WP-67 (H710050-14) Sludge Sampled: 23-Oct-07 15:18 Received: 26-Oct-07 12:00 70 1 07-Nov-07 2.0 meq/100 g **Cation Exchange Capacity** ------WP-72 (H710050-15) Sludge Sampled: 23-Oct-07 15:20 Received: 26-Oct-07 12:00 80 **Cation Exchange Capacity** 2.0 meq/100 g 1 07-Nov-07 -----

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## Interview 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number:
 102-11
 Annual Control

 554 S. Yosemite Ave.
 Project Name:
 ConAgra Aerated Pond
 Work Order No.:

 Oakdale, CA
 95361
 Project Manager:
 H710050

 DTPA Extractable Metals

| Analyte                                                                                                                                                | Result                                                                 | Reporting<br>Limit                                                                            | Units                                                                                     | Dilution                                                                                         |   | Analyzed                              | Method                                                                                                | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------|
| WP-28 (H710050-01) Sludge                                                                                                                              | Sampled: 23-Oct-07 09:30                                               | Received: 26-Oct-                                                                             | 07 12:00                                                                                  |                                                                                                  |   |                                       |                                                                                                       |       |
| Antimony                                                                                                                                               | ND                                                                     | 2.0                                                                                           | mg/kg                                                                                     | i                                                                                                | * | 07-Nov-07                             | EPA 6020A                                                                                             |       |
| Arsenic                                                                                                                                                | ND                                                                     | 1.0                                                                                           | н                                                                                         | в.                                                                                               |   |                                       | н                                                                                                     |       |
| Barium                                                                                                                                                 | ND                                                                     | 5.0                                                                                           | н                                                                                         | 17                                                                                               |   |                                       |                                                                                                       |       |
| Beryllium                                                                                                                                              | ND                                                                     | 1.0                                                                                           | ŀ                                                                                         | n                                                                                                |   | п                                     | 11                                                                                                    | . '   |
| Cadmium                                                                                                                                                | ND                                                                     | 1.0                                                                                           | n                                                                                         | n                                                                                                |   | п                                     | 0                                                                                                     |       |
| Chromium                                                                                                                                               | ND                                                                     | 1.0                                                                                           | n                                                                                         | n                                                                                                |   | 9                                     | 11                                                                                                    |       |
| Cobalt                                                                                                                                                 | ND                                                                     | 1.0                                                                                           | U                                                                                         | u                                                                                                |   | 11                                    | u                                                                                                     |       |
| Copper                                                                                                                                                 | ND                                                                     | 2.0                                                                                           | U                                                                                         | U                                                                                                |   | 51                                    | n                                                                                                     |       |
| Iron                                                                                                                                                   | 190                                                                    | 20                                                                                            | н                                                                                         | u                                                                                                |   | น                                     | н                                                                                                     |       |
| Lead                                                                                                                                                   | 3,9                                                                    | 1.0                                                                                           | 11                                                                                        | u                                                                                                |   | 11                                    | в                                                                                                     |       |
| Manganese                                                                                                                                              | ND                                                                     | 20                                                                                            | a                                                                                         | şı                                                                                               |   | 11                                    | H                                                                                                     |       |
| Mercury                                                                                                                                                | ND                                                                     |                                                                                               | u                                                                                         | H                                                                                                |   | м                                     | 11                                                                                                    |       |
| Molybdenum                                                                                                                                             | ND                                                                     |                                                                                               | н                                                                                         | и                                                                                                |   | н                                     | н                                                                                                     |       |
| Nickel                                                                                                                                                 | 1.9                                                                    |                                                                                               | н                                                                                         | n                                                                                                |   | n                                     | u .                                                                                                   |       |
| Selenium                                                                                                                                               | NE                                                                     |                                                                                               | н                                                                                         | n                                                                                                |   | n                                     | н                                                                                                     |       |
| Silver                                                                                                                                                 | NE                                                                     |                                                                                               | n                                                                                         | n                                                                                                |   | п                                     | ш                                                                                                     |       |
| Thallium                                                                                                                                               | NE                                                                     |                                                                                               | n                                                                                         | D                                                                                                |   | n                                     | u                                                                                                     |       |
| Vanadium                                                                                                                                               | 1.3                                                                    |                                                                                               | n                                                                                         | 0                                                                                                |   | U                                     | u                                                                                                     |       |
| Zine                                                                                                                                                   | 13                                                                     |                                                                                               | п                                                                                         | -11                                                                                              |   |                                       | u                                                                                                     |       |
|                                                                                                                                                        |                                                                        |                                                                                               | 07 12.00                                                                                  |                                                                                                  |   |                                       |                                                                                                       |       |
| WP-30 (H710050-02) Sludge                                                                                                                              | Sampled: 23-Oct-07 09:50                                               | · · · · · ·                                                                                   |                                                                                           |                                                                                                  |   |                                       |                                                                                                       |       |
| Antimony                                                                                                                                               | NE                                                                     |                                                                                               | mg/kg                                                                                     | 1                                                                                                |   | 07-Nov-07                             | EPA 6020A                                                                                             |       |
| Arsenic                                                                                                                                                | ND                                                                     |                                                                                               | N                                                                                         | 11                                                                                               |   | u                                     |                                                                                                       |       |
| Barium                                                                                                                                                 | NE                                                                     | 5.0                                                                                           | 11                                                                                        |                                                                                                  |   |                                       |                                                                                                       |       |
| Demillion                                                                                                                                              |                                                                        |                                                                                               |                                                                                           | . 11                                                                                             |   | 11                                    | н                                                                                                     |       |
| Derymum                                                                                                                                                | NE                                                                     | 1.0                                                                                           | u                                                                                         | и                                                                                                |   | и                                     | и                                                                                                     |       |
| *                                                                                                                                                      | NE<br>NE                                                               | 1.0<br>1.0                                                                                    | u<br>H                                                                                    | ji<br>B                                                                                          |   | M<br>IS                               | M<br>IT                                                                                               |       |
| Cadmium<br>Chromium                                                                                                                                    | NE<br>NE<br>NE                                                         | 1.0<br>1.0<br>1.0                                                                             | н<br>К<br>13                                                                              | H<br>IS<br>IS                                                                                    |   | 11                                    | )f<br>19                                                                                              |       |
| Cadmium<br>Chromium                                                                                                                                    | NE<br>NE                                                               | 1.0<br>1.0<br>1.0                                                                             | 4<br>15<br>11                                                                             | и<br>В<br>П                                                                                      |   | и<br>п<br>п                           | H<br>H<br>H<br>H                                                                                      |       |
| Cadmium<br>Chromium<br>Cobalt                                                                                                                          | NE<br>NE<br>NE<br>NE<br>NE                                             | 1.0<br>1.0<br>1.0<br>1.0<br>2.0                                                               | 11<br>17<br>11<br>11                                                                      | и<br>В<br>П<br>П                                                                                 |   | 11<br>17<br>17<br>11                  | и<br>11<br>12<br>11                                                                                   |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper                                                                                                                | NE<br>NE<br>NE<br>NE                                                   | 1.0<br>1.0<br>1.0<br>1.0<br>2.0                                                               | 4<br>15<br>11                                                                             | и<br>В<br>П                                                                                      |   | 11<br>17<br>11<br>11                  | и<br>п<br>п<br>п<br>п                                                                                 |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron                                                                                                        | NE<br>NE<br>NE<br>NE<br>NE                                             | 1.0<br>1.0<br>1.0<br>2.0<br>20                                                                | 11<br>17<br>11<br>11                                                                      | и<br>В<br>П<br>П                                                                                 |   | 6<br>17<br>11<br>11<br>11<br>11<br>11 | и<br>п<br>п<br>п<br>ц<br>ц                                                                            |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead                                                                                                | NE<br>NE<br>NE<br>NE<br>300                                            | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0                                                         | 4<br>11<br>11<br>11                                                                       | и<br>В<br>П<br>Ц<br>Ц                                                                            |   | 11<br>17<br>11<br>11                  | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese                                                                                   | NE<br>NE<br>NE<br>NE<br>300<br>1.5                                     | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20                                                   | 4<br>17<br>11<br>11<br>11                                                                 | и<br>п<br>п<br>ц<br>ц                                                                            | · |                                       | и<br>п<br>п<br>п<br>ц<br>ц                                                                            |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury                                                                        | NL<br>NE<br>NE<br>300<br>1.5<br>NL                                     | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10                                           | 8<br>8<br>9<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | и<br>п<br>п<br>ц<br>ц<br>ц                                                                       |   |                                       | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Molybdenum                                                          | NL<br>NE<br>NE<br>300<br>1.5<br>NL                                     | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10<br>1.0                                    | 4<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                         | и<br>п<br>п<br>ц<br>ц<br>ч<br>ч                                                                  |   |                                       | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Molybdenum<br>Nickel                                                | NE<br>NE<br>NE<br>300<br>1.5<br>NE<br>NE                               | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10<br>1.0<br>1.0                             |                                                                                           | и<br>п<br>ц<br>ц<br>ц<br>ц<br>ц                                                                  |   |                                       | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Molybdenum<br>Nickel<br>Selenium                                    | NE<br>NE<br>NE<br>300<br>1.5<br>NE<br>NE<br>NE<br>1.4                  | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10<br>1.0<br>1.0<br>1.0                      |                                                                                           | и<br>п<br>п<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц |   |                                       | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Beryllium<br>Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Silver<br>Thallium | NE<br>NE<br>NE<br>300<br>1.5<br>NE<br>NE<br>NE<br>NE<br>NE             | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10<br>1.0<br>1.0<br>1.0<br>1.0               |                                                                                           | и<br>п<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц |   |                                       | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                  |       |
| Cadmium<br>Chromium<br>Cobalt<br>Copper<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Silver                          | NE<br>NE<br>NE<br>300<br>1.5<br>NE<br>NE<br>NE<br>NE<br>NE<br>NE<br>NE | 1.0<br>1.0<br>1.0<br>2.0<br>20<br>1.0<br>20<br>0.10<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |                                                                                           | и<br>п<br>п<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц<br>ц |   |                                       | н<br>п<br>D<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U |       |

Approved By

## Interview 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | and linking with the                  |
|----------------------|------------------------------------|---------------------------------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.:                       |
| Oakdale, CA 95361    | Project Manager:                   | H710050                               |
|                      | DTPA Extractable Metals            | · · · · · · · · · · · · · · · · · · · |

| Analyte                        | Resul                    | Reporting<br>Limit | Units    | Dilution     |     | Analyzed  | Method    | Notes |
|--------------------------------|--------------------------|--------------------|----------|--------------|-----|-----------|-----------|-------|
| WP-31 (H710050-03) Sludge      | Sampled: 23-Oct-07 10:20 | Received: 26-Oct-  | 07 12:00 |              |     |           |           |       |
| Antimony                       | NE                       | 2.0                | mg/kg    | 1.           |     | 07-Nov-07 | EPA 6020A |       |
| Arsenic                        | NE                       | 1.0                | н        |              |     | . u       | н         |       |
| Barium                         | 8.4                      | 5.0                |          |              |     | ч         | н         |       |
| Beryllium                      | NE                       | 1.0                | . 0      |              |     | U         | 0         |       |
| Cadmium                        | NE                       | 1.0                | n        | n            |     | n         | n         |       |
| Chromium                       | NE                       | 1.0                | 11       | 12           |     | n         | n         |       |
| Cobalt                         | ND                       | 1.0                | н        | и            |     | n         | 17        |       |
| Copper                         | 6.4                      | 2.0                | н        | и            |     | н         | и         |       |
| Iron                           | 220                      | 20                 | u        |              |     | "         |           |       |
| Lead                           | 1,5                      | 1.0                | u        | n            |     | u         | и         |       |
| Manganese                      | ND                       | 20                 | 11       | a            |     | · H       | u         |       |
| Mercury                        | ND                       | 0.10               | a        | a            |     | ŧ         | ti        |       |
| Molybdenum                     | ND                       |                    | 11       | ., 0         |     | "         | 51        |       |
| Nickel                         | 1.4                      | 1.0                | u        | 0            |     | 11        | 11        |       |
| Selenium                       | ND                       | 1.0                |          | н            |     | н         | u         |       |
| Silver                         | 18                       | 1.0                | н        | н            |     | ц         | u         |       |
| Thallium                       | ND                       |                    | n        | н            |     | u         | н         |       |
| Vanadium                       | 1.5                      |                    | n        | 'n           |     | 0         | н ,       |       |
| Zinc                           | 22                       |                    | 17       | 17           |     | н         | U         |       |
| WP-32 (H710050-04) Sludge      | Sampled: 23-Oct-07 10:40 | Received: 26-Oct-  | 07 12:00 |              |     | ·         |           |       |
| Antimony                       | ND                       | 2.0                | mg/kg    | 1            |     | 07-Nov-07 | EPA 6020A |       |
| Arsenic                        | ND                       | 1.0                | — —<br>н | . <b>#</b> I |     | P .       | n         |       |
| Barium                         | ND                       | 5.0                | u        | "            |     | н         | п         |       |
| Beryllium                      | ND                       |                    | u        | u            |     | 11        | "         | •     |
| Cadmium                        | ND                       | 1.0                | ч        | н            |     | 11        | 17        |       |
| Chromium                       | ND                       | 1.0                | н        | н            |     | n         | 15        |       |
| Cobalt                         | ND                       | 1,0                | u        | n            |     | ۳.        | И         |       |
| Copper                         | 4.7                      | 2.0                | u        | n            |     | 51        | И         |       |
| Iron                           | 180                      | 20                 | н        | n            |     | u         | 11        |       |
| Lead                           | 1.3                      | 1.0                | н        | п            |     |           | n         |       |
| Manganese                      | ND                       |                    | в        | 5 <b>n</b>   | ÷ . | a         | u         |       |
| Mercury                        | ND                       |                    | ц        | н            |     | <b>u</b>  | u         |       |
| Molybdenum                     | ND                       |                    | и        | u            |     | u         | 11        |       |
| Nickel                         | ND                       |                    | . ч      | 11           |     | н         | а         |       |
|                                | ND                       |                    | 11       | 11           | 1   |           | 4         |       |
|                                | . IND                    |                    |          |              |     |           |           |       |
| Selenium                       | ND                       |                    | พ        | 11           |     | н         |           |       |
| Selenium<br>Silver<br>Thallium |                          | 1.0                | ท        | N<br>11      |     | н<br>11   |           |       |

#### Approved By

Zinc

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

18

5.0

k

## @1301 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number:
 102-11

 554 S. Yosemite Ave.
 Project Name:
 ConAgra Aerated Pond

 Oakdale, CA
 95361
 Project Manager:

| Analyte    | Result                   | Reporting<br>Limit | Units      | Dilution |               | Analyzed   | Method    | Notes |
|------------|--------------------------|--------------------|------------|----------|---------------|------------|-----------|-------|
| -          | Sampled: 23-Oct-07 11:10 |                    |            |          |               |            |           |       |
|            |                          |                    |            |          |               | 07-Nov-07  | EPA 6020A |       |
| Antimony   | ND                       |                    | mg/kg<br>" | 1        |               | U/-INOV-U/ | EPA 0020A |       |
| Arsenic    | ND                       |                    | 0          |          |               |            | n         |       |
| Barium     | ND                       |                    |            | n        |               | 0          |           |       |
| Beryllium  | ND                       |                    |            |          |               | 0          |           |       |
| Cadmium    | ND                       |                    |            | . 1)     |               | 9          |           |       |
| Chromium   | ND                       |                    | п          | U        |               |            |           | .'    |
| Cobalt     | ND                       |                    | н          | п        |               | "          | "         |       |
| Copper     | 6.8                      |                    | (I         | u        |               | 11         |           |       |
| Iron       | 140                      | 20                 | 11         | . 11     |               | n          | u         |       |
| Lead       | ND                       | 1.0                | 11         | 11       |               | 11         | 11        |       |
| Manganese  | ND                       | 20                 | พ          | ţi.      |               | и          | 11        |       |
| Mercury    | ND                       | 0.10               | 11         | н        |               | н          | н         |       |
| Molybdenum | ND                       | 1.0                | м          |          |               | 17         | н         |       |
| Nickel     | ND                       | 1.0                | n          |          |               | n          | n         |       |
| Selenium   | ND                       | 1.0                | n          | 17       |               | n          | n         |       |
| Silver     | ND                       |                    | п          | 17       | · · ·         | ŋ          | n         |       |
| Thallium   | ND                       | 1.0                | н          | n        |               | п          | н         |       |
| Vanadium   | 1.2                      | 1.0                | н          | U        |               | н          | н         |       |
| Zine       | 18                       |                    | u          | н        |               |            | n         |       |
|            |                          |                    | 07 12:00   |          |               |            |           |       |
|            | Sampled: 23-Oct-07 11:30 | _                  |            |          | <del></del> . |            |           |       |
| Antimony   | ND                       |                    | mg/kg      | 1        |               | 07-Nov-07  | EPA 6020A |       |
| Arsenic    | ND                       |                    | н          | u        |               | u          |           |       |
| Barium     | ND                       |                    | и.         | 11       |               | н          | n         |       |
| Beryllium  | ND                       |                    | H.         | N        |               | и          | 11        |       |
| Cadmium    | ND                       | 1.0                | 11         | н        |               | н          | n         |       |
| Chromium   | ND                       | 1.0                | n          | n        |               | н          | н         |       |
| Cobalt     | ND                       | 1.0                |            | н        |               | n          | н         |       |
| Copper     | 5.2                      | 2.0                |            | n        |               | n          | 11        |       |
| Iron       | 140                      | 20                 |            | U        |               | D          | n         |       |
| Lead       | 1,1                      | 1.0                | u          | n        |               | u          | н         |       |
| Manganese  | ND                       |                    | 11         | н        |               | н          | н         |       |
| Mercury    | NE                       |                    | ħ          | u        |               | н          | υ.        | ·     |
| Molybdenum | NE                       |                    | п .        |          |               | a          | u         |       |
| Nickel     | 1.5                      |                    |            | ti       |               | 11         | ч         |       |
| Selenium   | NE                       |                    |            | н        |               | 9          | u         |       |
| Silver     | NE                       |                    | n          | н        |               | น          | N         |       |
| Thallium   | NE                       |                    | n          | 11       |               | u          | n         |       |
|            | 1.3                      |                    | н          | R        |               | 11         | n         | • .   |
| Vanadium   |                          |                    |            | н        |               | и          | н         |       |
| Zinc       | 22                       | 5.0                | -          |          |               |            |           |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

÷

## الكَرْكَانِ العُلْمَةُ 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361 Project Number: 102-11 Project Name: ConAgra Aerated Pond Project Manager: ------

Work Order No.: H710050

\_\_\_\_\_

#### **DTPA Extractable Metals**

| Result                     | Reporting<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampled: 23-Oct-07 11:50 R | eceived: 26-Oct-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |
| ND                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 07-Nov-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 220                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>u</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | น                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>u</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.2                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.5                        | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled: 23-Oct-07 12:20 R | eceived: 26-Oct-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 07-Nov-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | า                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , <b>u</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 260                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | u .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <b>u</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | u .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.2                        | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NI J                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND<br>ND                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND<br>ND<br>1.6            | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | п<br>- н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>220<br>1.1<br>ND<br>ND<br>220<br>1.1<br>ND<br>ND<br>ND<br>ND<br>1.0<br>ND<br>ND<br>1.0<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.2<br>5.5<br>Sampled: 23-Oct-07 12:20 R<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ND         2.0           ND         1.0           ND         5.0           ND         1.0           ND         1.0           ND         1.0           ND         1.0           ND         1.0           ND         1.0           ND         2.0           220         20           1.1         1.0           ND         20           ND         0.10           ND         1.0           ND         2.0 | ND         1.0         "           ND         5.0         "           ND         1.0         "           ND         2.0         "           220         20         "           1.1         1.0         "           ND         2.0         "           ND         2.0         "           ND         2.0         "           ND         1.0         " | ND         2.0         mg/kg         1           ND         1.0         "         "           ND         5.0         "         "           ND         1.0         "         "           ND         2.0         "         "           ND         2.0         "         "           ND         1.0         "         "           ND         0.10         "         "           ND         1.0         " <t< td=""><td>ND         2.0         mg/kg         1           ND         1.0         "         "           ND         5.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         20         "         "           ND         20         "         "           ND         20         "         "           ND         0.10         "         "           ND         1.0         "         "           Sampled: 23-Oct-07 12:20         Received: 26-Oct-07 12:00         "           ND         1.0</td><td>ND         2.0         mg/kg         1         07-Nov-07           ND         1.0         "         "         "           ND         5.0         "         "         "           ND         1.0         "         "         "           ND         20         "         "         "           ND         1.0         "         "         "           ND         0.10         "         "         "           ND         1.0         "         "         "           ND         1.</td><td>ND         2.0         mg/kg         1         07-Nov-07         EPA 6020A           ND         1.0         "         "         "         "           ND         5.0         "         "         "         "         "           ND         1.0         "         "         "         "         "         "           ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "</td></t<> | ND         2.0         mg/kg         1           ND         1.0         "         "           ND         5.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         1.0         "         "           ND         20         "         "           ND         20         "         "           ND         20         "         "           ND         0.10         "         "           ND         1.0         "         "           Sampled: 23-Oct-07 12:20         Received: 26-Oct-07 12:00         "           ND         1.0 | ND         2.0         mg/kg         1         07-Nov-07           ND         1.0         "         "         "           ND         5.0         "         "         "           ND         1.0         "         "         "           ND         20         "         "         "           ND         1.0         "         "         "           ND         0.10         "         "         "           ND         1.0         "         "         "           ND         1. | ND         2.0         mg/kg         1         07-Nov-07         EPA 6020A           ND         1.0         "         "         "         "           ND         5.0         "         "         "         "         "           ND         1.0         "         "         "         "         "         "           ND         1.0         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Approved By

### @ 700 aboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

|                                       |                                    | A · A -         |
|---------------------------------------|------------------------------------|-----------------|
| ConAgra Foods Inc.                    | Project Number: 102-11             | and the         |
| 554 S. Yosemite Ave.                  | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361                     | Project Manager:                   | H710050         |
| · · · · · · · · · · · · · · · · · · · | DTPA Extractable Metals            |                 |

#### Reporting Units Analyzed Method Notes Limit Dilution Result Analyte WP-59 (H710050-09) Sludge Sampled: 23-Oct-07 12:40 Received: 26-Oct-07 12:00 ND 2.0 07-Nov-07 EPA 6020A mg/kg 1 Antimony 11 11 ND 1.0 u Arsenic Ħ 31 çi ND 5.0 Barium u u tI ND 1.0 Beryllium 11 11 ND 1.0 Cadmium я Chromium ND 1.0 u ND 1.0 Cobalt 2.2 2.0 11 Copper 140 20 11 Iron 1.0 11 ND Lead ND 20 11 Manganese ... ND0.10 Mercury n 1.0 Molybdenum ND н Nickel ND 1.0 в ND 1.0 Selenium ND 1.0 в Silver ND 1.0 . 0 IJ Thallium ND 1.0 n в Vanadium .... 19 9.5 5.0 ... Zinc WP-61 (H710050-10) Sludge Sampled: 23-Oct-07 13:00 Received: 26-Oct-07 12:00 07-Nov-07 ND EPA 6020A 2.0 1 Antimony mg/kg 1.0 ND n н Arsenic n п п ND 5.0 a Barium п n ND 1.0 0 Beryllium 1.0 п n ND Cadmium ND 1.0 п n Chromium ND 1.0 U n Cobalt u D ND 2.0 Copper n n 120 20 Iron u .... 1.1 1.0 Lead n 91 ND 20 11 Manganese η ND 0.10 ц 11 Mercury ND ... 1.0 Molybdenum .... 1.0 1.0 Nickel ND 1.0 н Selenium 1.0 п ND Silver ....

Approved By

Thallium

Zinc

Vanadium

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

ND

1.4

7.0

1.0

1.0

5.0

11

я

ų

1

l

## @1300 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | - Marine Marine |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
| · · ·                | DTPA Extractable Metals            |                 |

#### Reporting Result Limit Units Dilution Analyzed Method Notes Analyte WP-64 (H710050-11) Sludge Sampled: 23-Oct-07 13:15 Received: 26-Oct-07 12:00 07-Nov-07 EPA 6020A Antimony ND 2.0 mg/kg 1 Arsenic ND 1.0 11 u -0 н u ND 5.0 11 0 I Barium 11 ND 1.0 0 ... н Beryllium ND u п 1.0 Cadmium u ND п 1.0 Chromium u a ND 1.0 Cobalt u 0 2.0 Copper 2.6 п 250 u 20 Iron п 3.2 1.0 n Lead u Manganese ND 20 п ND 0.10 0 ... Mercury ND u 0 1.0 Molybdenum u 0 6.1 1.0 Nickel .... u ND 1.0 Selenium ч ... ND 1.0 Silver п ND ٠u Thallium 1.0 u n Vanadium 1.8 1.0 14 5.0 п a Zinc

#### WP-65 (H710050-12) Sludge Sampled: 23-Oct-07 13:30 Received: 26-Oct-07 12:00

| Antimony   | ND  | 2.0  | mg/kg | · 1 | 07-Nov-07 | EPA 6020A |  |
|------------|-----|------|-------|-----|-----------|-----------|--|
| Arsenic    | ND  | 1.0  |       | n   | Ш         | n         |  |
| Barium     | ND  | 5.0  | н     | u   | n         | υ.        |  |
| Beryllium  | ND  | 1.0  | н     | u   | n         | 11        |  |
| Cadmium    | ND  | 1.0  | 0     | н   |           | ม         |  |
| Chromium   | ND  | 1.0  | U     | н   |           | น         |  |
| Cobalt     | ND  | 1.0  | н     | 0   | н         | n         |  |
| Copper     | 3.3 | 2.0  | u     | a   | п         | n         |  |
| fron       | 240 | 20   | н     | u   | n         | н         |  |
| Lead       | 2.7 | 1.0  | н     | a   | n         | n         |  |
| Manganese  | ND  | 20   | 0     | н   |           | ม         |  |
| Mercury    | ND  | 0.10 | n     | н   |           | น         |  |
| Molybdenum | ND  | 1.0  | u     | u   |           | N         |  |
| Nickel     | 4.4 | 1.0  | н     | (I  | п         | N         |  |
| Selenium   | ND  | 1.0  | н     | n   | н         | N         |  |
| Silver     | ND  | 1.0  |       | u   | U         | н         |  |
| Fhallium   | ND  | 1.0  | н     | 'n  | U         | H         |  |
| Vanadium   | 2.1 | 1.0  | u     | 11  | н         | n         |  |
| Zinc       | 14  | 5.0  | u –   | , u |           | и         |  |

#### Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Å

ł

## argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361 Project Number: 102-11

Project Name: ConAgra Aerated Pond Project Manager: -----



#### **DTPA** Extractable Metals

| Analyte                   | Result                   | Reporting<br>Limit | Units              | Dilution | Analyzed   | Method    | Notes |
|---------------------------|--------------------------|--------------------|--------------------|----------|------------|-----------|-------|
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-Oct   | 07 12:00           |          |            |           |       |
| Antimony                  | ND                       | 2.0                | mg/kg              | 1        | 07-Nov-07  | EPA 6020A | 1.1   |
| Arsenic                   | ND                       | 1.0                | n                  | U        | IT         | น         |       |
| Barium                    | ND                       | 5.0                | n                  | U        | n          | н.        |       |
| Beryllium                 | ND                       | 1.0                | n                  | п        | . <b>n</b> | и         |       |
| Cadmium                   | ND                       | 1.0                | U                  | ц        | n          | и         |       |
| Chromium                  | ND                       | 1.0                | U                  |          | n          | в         |       |
| Cobalt                    | ND                       | 1.0                | н                  | ч        | U U        | 17        |       |
| Copper                    | ND                       | 2.0                | н                  | n        | U          | n         |       |
| fron                      | 210                      | 20                 | н                  | н        | н          | n         |       |
| Lead                      | 1,4                      | 1.0                | п                  | . 0      | п          | н         |       |
| Manganese                 | ND                       | 20                 | u                  |          | п          | U         |       |
| Mercury                   | ND                       | 0.10               | u                  |          | н          | U         |       |
| Molybdenum                | ND                       | 1.0                | u                  | · 9      | u          |           |       |
| Nickel                    | 2,0                      |                    | ч                  | u        | u          |           |       |
| Selenium                  | ND                       |                    | 9                  | ч        | u          | "         |       |
| Silver                    | ND                       |                    | ព                  | u        | u          | u         |       |
| Thallium                  | ND                       |                    | 11                 | พ        | ห          | 11        |       |
| Vanadium                  | 1.4                      |                    | 11                 | น        | ห          | n         |       |
| Zinc                      | 9.9                      |                    | u                  | н        | 11         | u         |       |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct   | -07 1 <b>2:</b> 00 |          | <br>       |           |       |
| Antimony                  | ND                       | 2.0                | mg/kg              | 1        | 07-Nov-07  | EPA 6020A |       |
| Arsenic                   | ND                       | 1.0                | u                  | H        | "          | ŀ         |       |
| Barium                    | ND                       | 5.0                | н                  | н        | n          | 17        |       |
| Beryllium                 | ND                       | 1.0                | н                  | и        | n          | 'n        |       |
| Cadmium                   | ND                       | 1.0                | H.                 | н        | п '        | п         |       |
| Chromium                  | ND                       | 1.0                | n                  | n        | н          | н         |       |
| Cobalt                    | ND                       | 1.0                | n                  | n        | н          | n         |       |
| Copper                    | ND                       | 2.0                | n                  | н        |            | н         |       |
| Iron                      | 220                      | 20                 | н                  | n        | U          | . U       |       |
| Lead                      | 1.6                      |                    | н                  | н        | 0          | u         |       |
| Manganese                 | ND                       |                    | п                  | U        | ч          | п         |       |
| Mercury                   | ND                       |                    | н                  | U        | ч          | u         |       |
| Molybdenum                | ND                       |                    | U                  | н        | u          | n         |       |
| Nickel                    | 1,7                      |                    | u                  | н        | u          | 11        |       |
| Selenium                  | ND                       |                    | u                  | н        | u          | и         |       |
| Silver                    | ND                       |                    | u                  | u        | Ħ          | н         |       |
| Thallium                  | ND                       |                    | ч                  | 11       | พ          | н         |       |
| Vanadium                  | 1.5                      |                    | 9                  | u        | 11         | n         |       |
| ¥ 01141314114             | 10                       |                    |                    |          |            | n         |       |

Approved By

Zine

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

5.6

5.0

## Isom Isom Sector Sector

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

Project Number: 102-11 Project Name: ConAgra Aerated Pond Project Manager: -----

Work Order No.: H710050

#### DTPA Extractable Metals

| Analyte<br>WP-72 (H710050-15) Sludge | Result<br>Sampled: 23-Oct-07 15:20 |     | Units<br>-07 12:00 | Dilution   |   | Analyzed | Method | Notes |
|--------------------------------------|------------------------------------|-----|--------------------|------------|---|----------|--------|-------|
|                                      |                                    |     |                    |            |   |          |        |       |
| Arsenic                              | ND                                 | 1.0 | н                  |            |   | u        | n      |       |
| Barium                               | ND                                 | 5.0 |                    | U          |   | 11       | U      |       |
| Beryllium                            | ND                                 | 1.0 | U                  | н          |   | и        | U      |       |
| Cadmium                              | ND                                 | 1.0 | u                  | н          |   | n        | U      |       |
| Chromium                             | ND                                 | 1.0 | U                  | н          |   | n        | н      |       |
| Cobalt                               | ND                                 | 1.0 | u                  | н          |   | и        | н      |       |
| Copper                               | ND                                 | 2.0 | u                  | "          | 1 | И        |        |       |
| Iron                                 | 440                                | 20  | н                  | 0          |   | н        | n      |       |
| Lead                                 | 3.6                                | 1.0 | u                  | u          |   | н        | н      |       |
| Manganese                            | ND                                 | 20  | н                  | н          |   | н        | u      |       |
| Mercury                              | ND                                 |     | 0                  | , <b>u</b> |   | И        | u      |       |
| Molybdenum                           | ND                                 |     | 11                 | н          |   | 11       |        |       |
| Nickel                               | 7.2                                | 1.0 | м                  | u          |   | IT       | н      |       |
| Selenium                             | ND                                 |     | ti                 | 11         |   | "        |        |       |
| Silver                               | ND                                 |     | น                  | 11         |   | "        | н      |       |
| Thallium                             | ND                                 |     | 11                 | 11         |   | n        | u      |       |
| Vanadium                             | 2.4                                |     | · 11               | ч          |   | n        | u      |       |
| Zinc                                 | 7,8                                |     | n                  | u          |   | п        | u      |       |

Approved By
## الكَرْنَانِ المُحْدَة (209) 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 الكَرْنَانِ المُ

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 |                          |
|----------------------|--------------------------------------------------------------------|--------------------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and in the second second |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.:          |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050                  |
|                      |                                                                    |                          |

Extractable Potassium (K)

|                           | ····                     |                      |            |          |   |   |           |          |       |
|---------------------------|--------------------------|----------------------|------------|----------|---|---|-----------|----------|-------|
| Analyte                   | Resul                    | Reporting<br>t Limit |            | Dilution |   |   | Analyzed  | Method   | Notes |
| -                         |                          |                      |            | Bildion  |   |   |           |          |       |
| WP-28 (H710050-01) Sludge |                          | _                    |            |          |   | · |           |          |       |
| Potassium                 | 44                       | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 540                      | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 430                      | 20                   | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oc      | t-07 12:00 |          | ` |   |           |          |       |
| Potassium                 | 330                      | ) 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 330                      | ) 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 310                      | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 300                      | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oc      | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 350                      | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-O       | t-07 12:00 |          |   |   |           |          |       |
| Potassium                 | 33(                      | 0 20                 | mg/kg      | 1        |   |   | 07-Nov-07 | EPA 7610 |       |

Approved By

## @MSOID laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | k _ A           |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and him his     |
| 554 S. Yosemite Ave, | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050         |
|                      | Extractable Potassium (K)                                          |                 |

| Analyte                   | Resul                    | Reporting<br>t Limit | Units    | Dilution | Analyzed  | Method   | Notes |
|---------------------------|--------------------------|----------------------|----------|----------|-----------|----------|-------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-Oct-    | 07 12:00 | · .      |           |          |       |
| Potassium                 | 32(                      | ) 20                 | mg/kg    | · 1      | 07-Nov-07 | EPA 7610 |       |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 | Received: 26-Oct-    | 07 12:00 | • :      |           |          |       |
| Potassium                 | 450                      | ) 20                 | mg/kg    | 1        | 07-Nov-07 | EPA 7610 |       |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 | Received: 26-Oct-    | 07 12:00 | 1        |           |          |       |
| Potassium                 | 320                      | ) 20                 | mg/kg    | 1        | 07-Nov-07 | EPA 7610 |       |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-Oct-    | 07 12:00 | · .      | · · · ·   |          |       |
| Potassium                 | 340                      | ) 20                 | mg/kg    | 1        | 07-Nov-07 | EPA 7610 |       |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct-    | 07 12:00 | · .      | · · · ·   |          |       |
| Potassium                 | 420                      | ) 20                 | mg/kg    | · 1      | 07-Nov-07 | EPA 7610 |       |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 | Received: 26-Oct-    | 07 12:00 |          | · · ·     |          |       |
| Potassium                 | 380                      | ) 20                 | mg/kg    | 1        | 07-Nov-07 | EPA 7610 |       |

Approved By

## @175011 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | A              |
|----------------------|--------------------------------------------------------------------|----------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and in and i   |
| 554 S. Yosemite Ave. | Project Name: ConAgra Acrated Pond                                 | Work Order No. |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050        |
|                      |                                                                    |                |

### Metals

| Analyte                 | Result                          | Reporting<br>Limit | Units          | Dilution   |                 | Analyzed  | Method                | Notes |
|-------------------------|---------------------------------|--------------------|----------------|------------|-----------------|-----------|-----------------------|-------|
| WP-28 (H710050-01) Sluc | lge Sampled: 23-Oct-07 09:30 Re | ceived: 26-Oct-    | 07 12:00       |            | 4. <sup>1</sup> |           |                       |       |
| <br>Calcium             | 660                             | 50                 | mg/kg          | 1          |                 | 07-Nov-07 | EPA 7140              |       |
| Antimony                | ND                              | 2.0                | น.             | It         |                 | 31-Oct-07 | EPA 6020A             |       |
| Arsenic                 | 2.1                             | 1.0                | ir.            | . 11       |                 | н         | u                     | · · · |
| Barium                  | 77                              | 5.0                |                | п          |                 | и         | и                     |       |
| Beryllium               | ND                              | 1.0                | n              | н          |                 | n         | н                     |       |
| Cadmium                 | ND                              | 1.0                | υ.,            | п          |                 | n         | 11                    |       |
| Chromium                | 27                              | 1.0                | н              | н          |                 | н         | н                     |       |
| Cobalt                  | 4.1                             | 1.0                | н              | н          |                 | н         | u                     |       |
| Copper                  | 43                              | 2.0                | a              |            |                 | 91        | н                     |       |
| Iron                    | 12000                           | 20                 | a a            | п          |                 | a         | u –                   |       |
| Lead                    | 5.5                             | 1.0                | 11             | u          |                 | и         | 11                    |       |
| Manganese               | 230                             | 20                 | u              | u          |                 | и         | 11                    |       |
| Mercury                 | ND                              | 0.1                | u              | и          |                 | "         | н                     |       |
| Molybdenum              | 1.2                             | 1.0                | IF.            | 19         |                 | п         | It.                   |       |
| Nickel                  | 25                              | 1.0                | n              | н          |                 | n         | n                     |       |
| Selenium                | ND                              | 1.0                | U              | н          |                 | н         | н                     |       |
| Silver                  | ND                              | 1.0                | н <sup>с</sup> | . 0        |                 | ч         | u                     |       |
| Thallium                | ND                              | 1.0                |                | н          |                 | u         | u                     |       |
| Vanadium                | 24                              | 1.0                | 91             | 54         |                 | u         | 11                    |       |
| Zinc                    | 83                              | 5.0                | a              | н          |                 | u         | บ                     |       |
| Magnesium               | 6500                            | 20                 | n              | · <b>n</b> |                 | 07-Nov-07 | EPA 7450              |       |
| Potassium               | 2200                            | 20                 | н              | 'n         |                 | н         | EPA 7610              |       |
| Sodium                  | 290                             | 50                 | . н            | n          |                 | п         | EPA 7770              |       |
|                         |                                 |                    | 07 12.00       |            |                 |           |                       |       |
| WP-30 (H710050-02) Slue | dge Sampled: 23-Oct-07 09:50 Re |                    |                | <u> </u>   |                 |           |                       |       |
| Calcium                 | 620                             | 50                 | mg/kg          | 1          |                 | 07-Nov-07 | EPA 7140<br>EPA 6020A |       |
| Antimony                | ND                              | 2.0                |                |            |                 | 31-Oct-07 | EPA 6020A             |       |
| Arsenic                 | 2.0                             | 1.0                | a              |            |                 |           |                       |       |
| Barium                  | 90                              | 5.0                |                | "          |                 |           |                       |       |
| Beryllium               | ND                              | 1.0                | u              |            |                 |           |                       |       |
| Cadmium                 | ND                              | 1.0                | 11             |            |                 | "         |                       | •     |
| Chromium                | 30                              | 1.0                | 11             | 11         |                 |           |                       |       |
| Cobalt                  | 4.2                             | 1.0                | 19             | n          |                 |           |                       |       |
| Copper                  | 53                              | 2.0                | n              | н          |                 |           | 9                     |       |
| Iron                    | 13000                           | 20                 | U              | н          |                 | u<br>u    | 1                     |       |
| Lead                    | 5.6                             | 1.0                | u              | u          |                 | n         |                       |       |
| Manganese               | 180                             | 20                 | ".             | "          |                 | п         |                       |       |
| Mercury                 | ND                              | 0.1                | u              | ч          |                 | IT.       | н                     |       |
| Molybdenum              | 1.0                             | 1.0                | 11             | 11         |                 | n         | It                    |       |
| Nickel                  | 25                              | 1.0                | 51             | н          |                 | n         | n                     |       |
| Selenium                | ND                              | 1.0                | น              | 17         |                 |           | u                     |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## المهان المهمان المهان الممان الممان الممان الممان الممان الممان المما

ConAgra Foods Inc. 554 S. Yosemite Ave.

Oakdale, CA 95361

Project Number: 102-11 Project Name: ConAgra Aerated Pond Project Manager: ------

Work Order No.: H710050

Metals

| Analyte                   | Resul                    | Reporting<br>t Limit | Units    | Dilution | ÷  | Analyzed  | Method    | Note |
|---------------------------|--------------------------|----------------------|----------|----------|----|-----------|-----------|------|
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct     | 07 12:00 |          |    |           | i.        |      |
| Silver                    | NE                       | ) 1.0                | mg/kg    | 1        |    | 31-Oct-07 | EPA 6020A | :    |
| Thallium                  | NE                       | ) 1.0                | ч        | u        |    | н         | u         |      |
| Vanadium                  | 24                       | 1.0                  | u        | u        |    | μ         | u         |      |
| Zinc                      | 70                       | i 5.0                | ч        | н        |    | ท         | н         |      |
| Magnesium                 | 4100                     | 20                   | н        | н        |    | 07-Nov-07 | EPA 7450  |      |
| Potassium                 | 1100                     | 1 20                 | н        | н        |    | u         | EPA 7610  |      |
| Sodium                    | 210                      | ) 50                 | n        | n        |    | ч         | EPA 7770  |      |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct     | 07 12:00 |          | i. |           |           |      |
|                           | 63(                      | ) 50                 | mg/kg    | 1 .      |    | 07-Nov-07 | EPA 7140  |      |
| Antimony                  | NE                       | 2.0                  | н        | u        |    | 31-Oct-07 | EPA 6020A |      |
| Arsenic                   | 2.3                      | <b>3</b> 1.0         | υ.       | μ        |    | п         | и         |      |
| Barium                    | 89                       | 5.0                  | . "      |          |    | н         |           |      |
| Beryllium                 | NE                       | 1.0                  | н        |          |    | н         |           |      |
| Cadmium                   | NE                       | 0 1.0                | n        | u        |    | . "       | u         |      |
| Chromium                  | 29                       | 1.0                  | n        | u        |    | "         | u         | •    |
| Cobalt                    | 3.9                      | ) 1.0                | H -      | 11       |    | n         | 11        |      |
| Copper                    | 49                       | 2.0                  |          | u        |    | It.       | 11        |      |
| Iron                      | 11000                    | 20                   | IT       | a.       |    | n         | м         |      |
| Lead                      | 5.4                      | 1.0                  |          | u        |    | в         | 11        |      |
| Manganese                 | 140                      | 20                   | H        | u        |    | u         | ч.        |      |
| Mercury                   | NE                       | 0.1                  | μ        | н        |    | и         | a         |      |
| Molybdenum                | NE                       | 1.0                  | и        | п.       |    | И         | ч         |      |
| Nickel                    | 25                       | 1.0                  | н        | n        |    | u         | ч         |      |
| Selenium                  | NE                       | 1.0                  | н        | 0        |    | 11        | 0         |      |
| Silver                    | NE                       | 1.0                  | 11       | н        |    | 18        | ч         |      |
| Thallium                  | NE                       | ) 1.0                | u        | н        |    | u         | ч         |      |
| Vanadium                  | . 24                     |                      | 11       | н        |    | a         | н         | ÷    |
| Zinc                      | 75                       | 5.0                  | 11       |          |    | O         | н         |      |
| Magnesium                 | 3200                     |                      | 11       | n        |    | 07-Nov-07 | EPA 7450  |      |
| Potassium                 | 930                      |                      | 51       | n        |    | u         | EPA 7610  |      |
| Sodium                    | 180                      |                      | 11       | в        |    | н         | EPA 7770  |      |

Approved By

## CITES CIA laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | and in marine   |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
|                      |                                    |                 |

### Metals

|                           |                          | Reporting         |           |          |      |              |           |            |
|---------------------------|--------------------------|-------------------|-----------|----------|------|--------------|-----------|------------|
| Analyte                   | Result                   | Limit             | Units     | Dilution |      | <br>Analyzed | Method    | Notes      |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct- | 07 12:00  |          |      |              |           |            |
| Calcium                   | 590                      |                   | mg/kg     | 1        |      | 07-Nov-07    | EPA 7140  |            |
| Antimony                  | ND                       | 2.0               | н         | u        |      | 31-Oct-07    | EPA 6020A |            |
| Arsenic                   | 1.5                      | 1.0               | н         | IT.      |      | u            | 17        |            |
| Barium                    | 63                       | 5.0               | н         | n        |      | ч            | н         |            |
| Beryllium                 | ND                       | 1.0               |           | n        | 1 A. | 11           | н         |            |
| Cadmium                   | ND                       | 1.0               | u         | 'n       |      | บ            | н         |            |
| Chromium                  | 21                       | 1.0               | 9         | н        |      | I            | 0         |            |
| Cobalt                    | 2.7                      | 1.0               | Ħ         | н        |      | и            | 0         |            |
| Copper                    | 37                       | 2.0               | н         |          |      | н            | . "       |            |
| Iron                      | 7200                     | 20                | н         | "        |      | IT.          | u         |            |
| Lead                      | 3.5                      | 1.0               | It        | *1       |      | n            | 11        |            |
| Manganese                 | 100                      |                   | n         | N        |      | 0            | 11        |            |
| Mercury                   | ND                       |                   | U         | в        |      | U            | н         |            |
| Molybdenum                | 1.1                      |                   | u         | It       |      | u            | n         |            |
| Nickel                    | 16                       |                   | п         | n        |      | н ,          | н         |            |
| Selenium                  | ND                       |                   | ч         | n        |      | ч            | н         |            |
| Silver                    | ND                       |                   | s         | n        |      | u            | n         |            |
|                           | ND                       |                   | н         | u        |      | u            | u         |            |
| Thallium                  | 16                       |                   |           | и        |      | н            | u         |            |
| Vanadium                  | 55                       |                   | н         | 11       |      |              | u         |            |
| Zinc                      |                          |                   | н         | 11       |      | 07-Nov-07    | EPA 7450  |            |
| Magnesium                 | 2000                     |                   | n         | 11       |      | n n          | EPA 7610  |            |
| Potassium                 | 820                      |                   | U         |          |      | U            | EPA 7770  |            |
| Sodium                    | 190                      |                   |           |          |      |              | EPA ///0  |            |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct  | -07 12:00 |          |      | <br>_        |           | <u>-</u> . |
| Calcium                   |                          | 50                | mg/kg     | 1        |      | 07-Nov-07    | EPA 7140  |            |
| Antimony                  | ND                       | 2.0               | ទ         | ù        |      | 31-Oct-07    | EPA 6020A |            |
| Arsenic                   | 1.5                      | 1.0               | u         | u        |      | u            | н         |            |
| Barium                    | 58                       | 5.0               | н         | u        |      | н            | u         |            |
| Beryllium                 | ND                       | 1.0               | 11        | ti       |      | н            | u         |            |
| Cadmium                   | ND                       | 1.0               | n         | н        |      | It           | n         |            |
| Chromium                  | 18                       | 1.0               | н         | н        |      | n            | н         |            |
| Cobalt                    | 2.7                      |                   |           | n        |      |              | R         |            |
| Copper                    | 32                       |                   |           | n        |      |              | 11        |            |
| Iron                      | 8000                     |                   | u         | n        |      |              | n         |            |
| Lead                      | 3.3                      |                   | a         | 0        |      |              |           |            |
| Manganese                 | 130                      |                   | п         | u        |      | ч            | u         |            |
| Manganese<br>Mercury      | ND                       |                   | н         | 11       |      | 11           | ч         |            |
| ,                         | NE                       |                   |           | ч        |      | u            | 11        |            |
| Molybdenum                | 15                       |                   | n         | u        |      | н            | 11        |            |
| Nickel                    | ND                       |                   | n         | н        |      | 11           | 11        |            |
| Selenium                  | NL                       | . 1.0             |           |          |      |              |           |            |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

k

## @1301 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave.

Oakdale, CA 95361

Project Number: 102-11 Project Name: ConAgra Aerated Pond

Work Order No.: H710050

## Project Manager: ----Metals

|                           |                             | Reporting       | ·                  |          |               |           |       |
|---------------------------|-----------------------------|-----------------|--------------------|----------|---------------|-----------|-------|
| Analyte                   | Result                      | Limit           | Units              | Dilution | <br>Analyzed  | Method    | Notes |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 Re | ceived: 26-Oct- | -07 12:00          |          |               |           |       |
| Silver                    | ND                          | 1.0             | mg/kg              | 1        | <br>31-Oct-07 | EPA 6020A |       |
| Thallium                  | ND                          | 1.0             | н                  | R        |               | и         |       |
| Vanadium                  | 16                          | 1.0             | н                  | и        | . "           | и         |       |
| Zinc                      | 50                          | 5.0             | n                  |          | н             | ч         |       |
| Magnesium                 | 2100                        | 20              | н.                 | u        | 07-Nov-07     | EPA 7450  |       |
| Potassium                 | 750                         | 20              | H                  | u        |               | EPA 7610  |       |
| Sodium                    | 170                         | 50              | и                  | <b>u</b> | 11            | EPA 7770  |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 Re | ceived: 26-Oct- | -07 1 <b>2:</b> 00 |          |               |           |       |
| Calcium                   | 610                         | 50              | mg/kg              | 1        | <br>07-Nov-07 | EPA 7140  |       |
| Antimony                  | ND                          | 2.0             | 11                 | 0        | 31-Oct-07     | EPA 6020A |       |
| Arsenic                   | 1.6                         | 1.0             | 11                 | 0        | u             | n         |       |
| Barium                    | 59                          | 5.0             | ч                  |          | n             | н         |       |
| Beryllium                 | ND                          | 1.0             | u                  | н        | u             | n         |       |
| Cadmium                   | ND                          | 1.0             | "                  | n        | 11            | н         |       |
| Chromium                  | 19                          | 1.0             | п                  | n        | μ             | n         |       |
| Cobalt                    | 2.7                         | 1.0             | 0                  | B        | u             | ħ         |       |
| Copper                    | 31                          | 2.0             | н                  | н        | 11            | н         |       |
| Iron                      | 8200                        | 20              |                    | н        | ч             | н         | :     |
| Lead                      | 3.7                         | 1.0             | н                  |          | н             | н         |       |
| Manganese                 | 130                         | 20              | n                  | n        | н             | н         |       |
| Mercury                   | 0.3                         | 0.1             | 11                 | ti       | n             | 11        |       |
| Molybdenum                | 1.1                         | 1.0             | 14                 | u        | n             | ti        |       |
| Nickel                    | 17                          | 1.0             | н                  | 11       | н             | ti        |       |
| Selenium                  | ND                          | 1.0             | u                  | 0        | n             | 9         |       |
| Silver                    | ND                          | 1.0             | u                  | u        | n             | 11        |       |
| Thallium                  | ND                          | 1.0             | u                  | н        | . 11          | ч         |       |
| Vanadium                  | 17                          | 1.0             | น                  | н        | н             | u         |       |
| Zinc                      | 54                          | 5.0             | u                  | н        | и             | u         |       |
| Magnesium                 | 2100                        | 20              |                    | n        | 07-Nov-07     | EPA 7450  |       |
| Potassium                 | 840                         | 20              | 9                  | n .      | n             | EPA 7610  |       |
| Sodium                    | 160                         | 50              | u                  | n        | 11            | EPA 7770  |       |
|                           |                             |                 |                    |          |               |           |       |

Approved By

## @ITGON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number: 102-11

 554 S. Yosemite Ave.
 Project Name: ConAgra Aerated Pond

 Oakdale, CA
 95361

 Project Manager:
 H710050

### Metals

| Analyte                   | Result                     | Reporting<br>Limit | Units     | Dilution |           | Analyzed   | Method               | Notes       |
|---------------------------|----------------------------|--------------------|-----------|----------|-----------|------------|----------------------|-------------|
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 F | Received: 26-Oct-  | 07 12:00  |          |           |            | · · · ·              |             |
| Calcium                   | 580                        | 50                 | mg/kg     | 1        |           | 07-Nov-07  | EPA 7140             |             |
| Antimony                  | ND                         | 2.0                | н         | It       |           | 31-Oct-07  | EPA 6020A            |             |
| Arsenic                   | 2,0                        | 1.0                | п         | n        |           | n          | n                    |             |
| Barium                    | 71                         | 5.0                | U.        | п        |           | п          | n                    |             |
| Beryllium                 | ND                         | 1.0                | п         | U        |           | н          | п                    |             |
| Cadmium                   | ND                         | 1.0                | (I        | U        |           | "          | н                    |             |
| Chromium                  | 26                         | 1.0                | ч         | н        |           | n          | 0                    |             |
| Cobalt                    | 4.0                        | 1.0                | 11        | н        | 14 July 1 | n          | U                    |             |
| Copper                    | 36                         | 2.0                | 11        | u        | · · · · · | υ '        | u                    |             |
| Iron                      | 12000                      | 20                 | 11        | 11       |           | u          | 11                   |             |
| Lead                      | 4,2                        | 1.0                | и         | 9        |           | u          | u                    | 1           |
| Manganese                 | 220                        | 20                 | н         | น        |           |            | u                    |             |
| Mercury                   | ND                         | 0.1                | в .       | . 11     | ÷.        | a          | 11                   |             |
| Molybdenum                | ND                         | 1.0                | н         | н        | ,         | 11         | н                    |             |
| Nickel                    | 22                         | 1.0                | п         | и        |           | 11         | н                    |             |
| Selenium                  | ND                         | 1.0                | ŋ         | 11       |           | н          | н                    |             |
| Silver                    | ND                         | 1.0                | U         |          | . :       |            | и                    |             |
| Thallium                  | ND                         | 1.0                | u         | п        | 4         | и          | и                    |             |
|                           | 20                         | 1.0                | u         | n        |           | н          | п                    |             |
| Vanadium                  | 20<br>52                   | 5.0                | u         | n        |           | 17         | п.                   |             |
| Zinc                      | 52<br>2700                 | 20                 | \$1       | · u      |           | 07-Nov-07  | EPA 7450             |             |
| Magnesium                 |                            |                    | พ         | u        |           | 07-1004-07 | EPA 7610             |             |
| Potassium                 | 980                        | 20                 |           |          |           | n          | EPA 7010<br>EPA 7770 | · · · ·     |
| Sodium                    | 170                        | 50                 |           |          | ·         |            | EFA 1170             | · .         |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 I | Received: 26-Oct-  | -07 12:00 |          |           | ·          |                      |             |
| Calcium                   | 520                        | 50                 | mg/kg     | 1        |           | 07-Nov-07  | EPA 7140             |             |
| Antimony                  | ND                         | 2.0                | "         | 11       |           | 31-Oct-07  | EPA 6020A            | 1.00        |
| Arsenic                   | 1.9                        | 1.0                |           | и        |           | "          | 11                   |             |
| Barium                    | 60                         | 5.0                | н         | 17       |           | u          | 11                   |             |
| Beryllium                 | ND                         | 1.0                | 0         | 17       |           | น          | и                    | · · · · · · |
| Cadmium                   | ND                         | 1.0                | 9         | n        |           | u          | u                    |             |
| Chromium                  | 20                         | 1.0                | 9         | н        |           | н          | н .                  |             |
| Cobalt                    | 3.0                        | 1.0                | ч         |          |           | И          | н                    |             |
| Copper                    | 35                         | 2.0                | น         | 0        |           | It.        | п                    |             |
| Iron                      | 8700                       | 20                 | u         | U        |           | 17         | н                    |             |
| Lead                      | 4.9                        | 1.0                | 11        | u        |           | n          | н                    |             |
| Manganese                 | 130                        | 20                 | R         | 11       |           | n          | 0                    |             |
| Manganese<br>Mercury      | ND                         | 0.1                | n         | u        |           | н          | U                    |             |
| •                         | ND                         | 1.0                | n         | ท        |           | н          | ч                    |             |
| Molybdenum                | 22                         | 1.0                | п         | n        |           | и          | ч                    |             |
| Nickel                    |                            | 1.0                |           | и        |           | н          | 11                   |             |
| Selenium                  | ND                         | 1,0                |           |          |           |            |                      |             |

Approved By

## @T301 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number: 102-11

 554 S. Yosemite Ave.
 Project Name: ConAgra Aerated Pond

 Oakdale, CA
 95361

 Project Manager:
 H710050

### Metals

| Analyte                  | Result                       | Reporting<br>Limit | Units    | Dilution |   | Analyzed  | Method         | Notes |
|--------------------------|------------------------------|--------------------|----------|----------|---|-----------|----------------|-------|
| •                        | e Sampled: 23-Oct-07 12:20 R |                    |          | Dirition |   | 1         |                |       |
|                          |                              |                    |          |          |   |           |                |       |
| Silver                   | ND                           | 1.0                | mg/kg    | 1        |   | 31-Oct-07 | EPA 6020A<br>" |       |
| Thallium                 | ND                           | 1.0                | IT       | н        |   |           | n              |       |
| Vanadium                 | 20                           | 1.0                | н        | 11       |   |           | 11             |       |
| Zinc                     | 59                           | 5.0                | H        | 11       |   | -         |                |       |
| Magnesium                | 3000                         | 20                 | н        | Ħ        |   | 07-Nov-07 | EPA 7450       |       |
| Potassium                | 940                          | 20                 | 11       | и.       |   |           | EPA 7610       |       |
| Sodium                   | 160                          | 50                 | u        | , u      |   | 11        | EPA 7770       | · .   |
| WP-59 (H710050-09) Sludg | e Sampled: 23-Oct-07 12:40 R | eceived: 26-Oct-   | 07 12:00 |          |   |           |                |       |
| Calcium                  | 1500                         | 50                 | mg/kg    | 1        | · | 07-Nov-07 | EPA 7140       |       |
| Antimony                 | ND                           | 2,0                | 0        | ņ        |   | 31-Oct-07 | EPA 6020A      |       |
| Arsenic                  | 1.6                          | 1.0                | 0        | n        |   | н         |                |       |
| Barium                   | 58                           | 5.0                | n        | "        |   |           | U              |       |
| Beryllium                | ND                           | 1.0                | n        | н        |   | п         | 11             |       |
| Cadmium                  | ND                           | 1.0                | n        | . "      |   | n         | н              |       |
| Chromium                 | 17                           | 1.0                | n        | 11       |   | n         | 17             |       |
| Cobalt                   | 2.7                          | 1.0                | n        | 11       |   | It        |                |       |
| Copper                   | 33                           | 2.0                | H        | \$1      |   | 11        | н              |       |
| Iron                     | 7200                         | 20                 | tı       | 4        |   | н         | в              |       |
| Lead                     | 4.2                          | 1.0                | 11       | 11       |   | u         | и              |       |
| Manganese                | 110                          | 20                 | u        | u        |   | u         | и              |       |
| Mercury                  | ND                           | 0.1                | н        | П        |   | 9         | 11             |       |
| Molybdenum               | ND                           | 1.0                | н        | н        |   | a         | 1              |       |
| Nickel                   | . 17                         | 1.0                | 0        | n        |   |           | u              |       |
| Selenium                 | ND                           | 1.0                | 0        | n        |   | ч         | u              |       |
| Silver                   | ND                           | 1.0                | н        | 11       |   | н         | a              |       |
| Thallium                 | ND                           | 1.0                | п        | H.       |   | н         | a              |       |
| Vanadium                 | 17                           | 1.0                |          | н        |   | н         | 11             |       |
| Zinc                     | 56                           | 5.0                | н        | н        |   |           | u              |       |
| Magnesium                | 2200                         | 20                 | и        | 11       |   | 07-Nov-07 | EPA 7450       |       |
| Potassium                | 760                          | 20                 | )I       | n        |   | υ         | EPA 7610       |       |
| Sodium                   | 150                          | -50                | 11       | 51       |   |           | EPA 7770       |       |

Approved By

## الكَتْرَيْنَ المُحْمَدَةُ 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 المَاتِي المُحْمَد

| 554 S. Yosemite Ave. | The second secon |                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                      | Project Name: ConAgra Aerated Pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H710050         |

### Metals

| Analyte                   | Result                      | Reporting<br>Limit | Units    | Dilution  |         | Analyzed  | Method                                | Notes |
|---------------------------|-----------------------------|--------------------|----------|-----------|---------|-----------|---------------------------------------|-------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 Re | ceived: 26-Oct-    | 07 12:00 |           |         |           |                                       |       |
| Calcium                   | 640                         | 50                 | mg/kg    | 1         |         | 07-Nov-07 | EPA 7140                              | 1     |
| Antimony                  | ND                          | 2.0                | Ħ        | u         |         | 31-Oct-07 | EPA 6020A                             |       |
| Arsenic                   | 1.5                         | 1.0                | Ħ        | 11        |         | м         | u                                     |       |
| Barium                    | 61                          | 5.0                | n        | <b>ti</b> |         | п         | u                                     |       |
| Beryllium                 | ND                          | 1.0                | 11       | u         |         | n         | u                                     |       |
| Cadmium                   | ND                          | 1.0                |          | 11        |         | n         | u                                     |       |
| Chromium                  | 19                          | 1.0                | u        | и         |         | n         | 11                                    |       |
| Cobalt                    | 3,3                         | 1.0                | u        | н         |         | n         | N .                                   |       |
| Copper                    | 25                          | 2.0                | и        | н         |         | n         | u                                     |       |
| Iron                      | 11000                       | 20                 | н        | п         |         | n         | n                                     |       |
| Lead                      | 4.7                         | 1.0                |          | и         |         |           | บ                                     |       |
| Manganese                 | 130                         | 20                 | n        | ч         |         | н         | าเ                                    |       |
| Mercury                   | ND                          | 0.1                | n        | н         |         | n         | н                                     |       |
| Molybdenum                | ND                          | 1.0                | n        | 11        | -       | n         | и                                     |       |
| Nickel                    | 18                          | 1.0                | п        | n         |         | U         | и                                     |       |
| Selenium                  | ND                          | 1.0                | u        | n         |         | п         | n                                     |       |
| Silver                    | ND                          | 1.0                | н        | 0         |         | п         | It                                    |       |
| Thallium                  | ND                          | 1,0                | н        | U         |         | н         | n                                     |       |
| Vanadium                  | 26                          | 1,0                | 0        | · II      |         | n         | n                                     |       |
| Zine                      | 50                          | 5.0                | u        |           |         | a         | n                                     |       |
| Magnesium                 | 2400                        | 20                 | ч        | n         |         | 07-Nov-07 | EPA 7450                              |       |
| Potassium                 | 830                         | 20                 | 11       | 9         |         | · u       | EPA 7610                              |       |
| Sodium                    | 160                         | 50                 | u        | u         |         | · •       | EPA 7770                              |       |
|                           |                             |                    | 07 10.00 |           |         |           |                                       |       |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 Re |                    |          |           |         |           | · · · · · · · · · · · · · · · · · · · |       |
| Calcium                   | 970                         | 50                 | mg/kg    | 1         | ·       | 07-Nov-07 | EPA 7140                              |       |
| Antimony                  | ND                          | 2.0                | 11       | "         | · · · · | 31-Oct-07 | EPA 6020A                             |       |
| Arsenic                   | 2.8                         | 1.0                | Ħ        | şı.       |         | и         | u                                     |       |
| Barium                    | 71                          | 5.0                | н        | 11        |         | п         | u                                     |       |
| Beryllium                 | ND                          | 1.0                | н        | พ         |         | u         | u                                     |       |
| Cadmium                   | ND                          | 1.0                | н        | n         | i -     | п         | u                                     |       |
| Chromium                  | 23                          | 1.0                | H        | и         |         | н         | 11                                    |       |
| Cobalt                    | 3.3                         | 1.0                | n        | и         |         | м         | 11                                    |       |
| Copper                    | 37                          | 2.0                | n        | н         |         | "         | น                                     |       |
| Iron                      | 10000                       | 20                 | н        | ĸ         |         | 11        | T                                     |       |
| Lead                      | 9.9                         | 1.0                | п        | It        |         | 17        | u                                     |       |
| Manganese                 | 140                         | 20                 | п        | It        |         | n         | น                                     |       |
| Mercury                   | ND                          | 0.1                | н        | n         |         | n         | n                                     |       |
| Molybdenum                | ND                          | 1.0                | u        | n         |         | n         | n                                     |       |
| Nickel                    | 29                          | 1.0                | u        |           |         | n         | n                                     |       |
| Selenium                  | ND                          | 1.0                | u        | U         |         | н         | It                                    |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

k

## @133011 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

### Project Number: 102-11 Project Name: ConAgra Aerated Pond Project Manager: -----

#### Metals

| Analyte                          | Result                  | Reporting<br>Limit | Units             | Dilution |       | Analyzed  | Method    | Notes |
|----------------------------------|-------------------------|--------------------|-------------------|----------|-------|-----------|-----------|-------|
| WP-64 (H710050-11) Sludge Sample | d: 23-Oct-07 13:15 Rece | ived: 26-Oct-      | 07 12:00          |          |       |           |           |       |
| Silver                           | ND                      | 1.0                | mg/kg             | 1        | ·     | 31-Oct-07 | EPA 6020A |       |
| Thaltium                         | ND                      | 1.0                | н                 | n        |       | n         |           |       |
| Vanadium                         | 28                      | 1.0                | 11                | и        |       | n         | 51        |       |
| Zinc                             | 66                      | 5.0                | u                 | м        |       | 13        | u         |       |
| Magnesium                        | 3100                    | 20                 | ч                 | u        |       | 07-Nov-07 | EPA 7450  |       |
| Potassium                        | 1100                    | 20                 | u –               | u        |       | 11        | EPA 7610  |       |
| Sodium                           | 250                     | 50                 | н                 | н        | × .   | ท         | EPA 7770  |       |
| WP-65 (H710050-12) Sludge Sample | d: 23-Oct-07 13:30 Rece | ived: 26-Oct-      | 07 1 <b>2</b> :00 |          |       |           |           | 4     |
| Calcium                          | 650                     | 50                 | mg/kg             | 1        |       | 07-Nov-07 | EPA 7140  |       |
| Antimony                         | ND                      | 2.0                | n                 | n        |       | 31-Oct-07 | EPA 6020A |       |
| Arsenic                          | 3.0                     | 1.0                | 18                | IT.      |       | u         | n         |       |
| Barium                           | 75                      | 5.0                | в                 | в        |       | н         | n         |       |
| Beryllium                        | ND                      | 1.0                | н                 | H.       |       | н         |           |       |
| Cadmium                          | ND                      | 1.0                | u                 | u        |       | н         | n         |       |
| Chromium                         | 24                      | 1.0                | บ                 | น        |       | н         | н         |       |
| Cobalt                           | 3.6                     | 1.0                | บ                 | 11       |       | н         |           |       |
| Copper                           | 40                      | 2.0                | 11                | si .     | 1. A. | n         | 11        |       |
| Iron                             | 8900                    | 20                 | н                 | u        |       | п         | พ         |       |
| Lead                             | 10                      | 1.0                | u                 | u        |       | n         | н         |       |
| Manganese                        | 160                     | 20                 | н                 | u        |       | IT.       | u         |       |
| Mercury                          | ND                      | 0,1                | н                 | н        |       | И         | . u       |       |
| Molybdenum                       | ND                      | 1.0                | н                 | н        |       | น         | u         |       |
| Nickel                           | 31                      | 1.0                | n                 | н        |       | ri        | u         |       |
| Selenium                         | ND                      | 1.0                | n                 | n        |       | н         | · •       |       |
| Silver                           | ND                      | 1.0                | п                 | п        |       | น         | U         |       |
| Challium                         | ND                      | 1.0                |                   | it.      |       | u         | u         |       |
| Vanadium                         | 30                      | 1.0                | u                 | п        |       | u         | п         |       |
| Zinc                             | 71                      | 5.0                | n                 | н        |       | u .       |           |       |
| Magnesium                        | 2700                    | 20                 | n                 | 11       |       | 07-Nov-07 | EPA 7450  |       |
|                                  |                         |                    |                   |          |       |           |           |       |
| Potassium                        | 810                     | 20                 | и                 | 11       |       | 0         | EPA 7610  |       |

#### Approved By

## @ITGOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number:
 102-11

 554 S. Yosemite Ave.
 Project Name:
 ConAgra Aerated Pond

 Oakdale, CA
 95361
 Project Manager:

## Metals

| Analyte                         | Result                      | Reporting<br>Limit | Units             | Dilution   |   | Analyzed   | Method               | Notes |
|---------------------------------|-----------------------------|--------------------|-------------------|------------|---|------------|----------------------|-------|
| WP-66 (H710050-13) Sludge       | Sampled: 23-Oct-07 14:44 Re | ceived: 26-Oct-    | 07 1 <b>2</b> :00 |            |   | · · · · ·  |                      |       |
| Calcium                         | 660                         | 50                 | mg/kg             | 1          |   | 07-Nov-07  | EPA 7140             |       |
| Antimony                        | ND                          | 2.0                | н.                | H          |   | 31-Oct-07  | EPA 6020A            |       |
| Arsenic                         | 1.6                         | 1.0                | si<br>si          | ¥          |   | н          | и                    |       |
| Barium                          | 52                          | 5.0                | u                 | ч          |   | n          | н                    |       |
| Beryllium                       | ND                          | 1.0                | ч <sup>.</sup>    | u          |   | n          | н                    |       |
| Cadmium                         | ND                          | 1.0                | 11                |            |   | n          | н                    |       |
| Chromium                        | 15                          | 1.0                | u                 |            |   |            | н                    |       |
| Cobalt                          | 2.5                         | 1.0                | çı                | 11         |   | n          | в                    |       |
| Copper                          | . 30                        | 2.0                | u .               | . a        |   | , It       | н                    |       |
| Iron                            | 7700                        | 20                 | ч                 | я          |   | It         | н                    |       |
| Lead                            | 4.3                         | 1.0                | 11                | 11         |   | и          | u                    |       |
| Manganese                       | 120                         | 20                 | 11                | u          |   | .,         | н                    |       |
| Mercury                         | ND                          | 0.1                | 11                | u          |   | n          | н                    |       |
| Molybdenum                      | ND                          | 1.0                | я                 | с <b>п</b> |   | B          | н                    |       |
| Nickel                          | 19                          | 1.0                | 11                | 11         |   | 12         | н                    |       |
| Selenium                        | ND                          | 1.0                | 11                | 11         |   | n          | п                    |       |
| Silver                          | ND                          | 1.0                | u                 | u          |   |            | 11                   |       |
| Thallium                        | ND                          | 1.0                | a                 | u          |   |            | 13                   |       |
|                                 | ND<br>19                    | 1.0                | 11                | a          |   | n          | It                   |       |
| Vanadium                        | 52                          | 5.0                | 11                | ų          | 4 | n          | It                   |       |
| Zinc                            | 52<br>2100                  | 3.0<br>20          | 11                | u          |   | 07-Nov-07  | EPA 7450             |       |
| Magnesium                       |                             |                    | u                 | . u        |   | 07-1404-07 | EPA 7450<br>EPA 7610 |       |
| Potassium                       | 730                         | 20                 | 9 ·               | u          |   | n          |                      |       |
| Sodium                          | 180                         | 50                 |                   |            |   |            | EPA 7770             |       |
| WP-67 (H710050-14) Sludge       | Sampled: 23-Oct-07 15:18 Re | ceived: 26-Oct-    | 07 12:00          |            |   |            | · <del></del> -      |       |
| Calcium                         | 570                         | 50                 | mg/kg             | 1          |   | 07-Nov-07  | EPA 7140             |       |
| Antimony                        | ND                          | 2.0                | 11                | u          |   | 31-Oct-07  | EPA 6020A            |       |
| Arsenic                         | 2.1                         | 1.0                | 11                | a          |   |            | 17                   |       |
| Barium                          | 77                          | 5.0                | 11                | 9          |   | It         | 17                   |       |
| Beryllium                       | ND                          | 1.0                | น                 | u          |   | n          | n                    |       |
| Cadmium                         | ND                          | 1.0                | u                 | u          |   | 17         | п                    |       |
| Chromium                        | 23                          | 1.0                | 9                 | u          |   | п          | n                    |       |
| Cobalt                          | 3.9                         | 1.0                | 11                |            |   | n          | n                    |       |
| Copper                          | 38                          | 2.0                | 11                | 9          |   | n          | п                    |       |
| Iron                            | 13000                       | 20                 | u                 | u          |   | и          | п                    |       |
| Lead                            | 8.8                         | 1.0                | 11                | u          |   | n          | n                    |       |
| Manganese                       | 210                         | 20                 | 9                 | u          |   | п          | n                    |       |
|                                 | ND                          | 0.1                | 9                 | u          |   | п          | n                    |       |
| Mercury                         |                             |                    |                   |            |   |            |                      |       |
| Mercury<br>Molyhdenum           |                             |                    | 11                | 9          |   | n          | U                    |       |
| Mercury<br>Molybdenum<br>Nickel | ND<br>24                    | 1.0                | 11<br>11          | 9          |   | n          | 0<br>0               |       |

Approved By

## argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

ND

ND

31

92

4000

1000

190

1.0

1.0

1.0

5.0

20

20

50

11

u

a

u.

н

п

n

07-Nov-07

n

п

EPA 7450

EPA 7610

EPA 7770

ConAgra Foods Inc.Project Number: 102-11Image: ConAgra Aerated Pond554 S. Yosemite Ave.Project Name: ConAgra Aerated PondWork Order No.:Oakdale, CA95361Project Manager: ------H710050

### Metals

| Analyte                   | Result                   | Reporting<br>Limit | Units    | Dilution  |  | Analyzed   | Method    | Notes |
|---------------------------|--------------------------|--------------------|----------|-----------|--|------------|-----------|-------|
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct   | 07 12:00 | · · · · · |  |            |           |       |
| Silver                    | ND                       | 1.0                | mg/kg    | 1         |  | 31-Oct-07  | EPA 6020A |       |
| Thallium                  | ND                       | 1.0                | u        | · – II    |  |            | a         |       |
| Vanadium                  | 27                       | 1.0                | H        | н         |  | P          | u         |       |
| Zinc                      | 69                       | 5.0                | n        | н         |  | н          | u         |       |
| Magnesium                 | 2700                     | 20                 | 11       | n         |  | 07-Nov-07  | EPA 7450  |       |
| Potassium                 | 930                      | 20                 | ŧ        | н         |  | 11         | EPA 7610  |       |
| Sodium                    | 190                      | 50                 | 51       | H         |  | ท          | EPA 7770  | 5     |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 | Received: 26-Oct-  | 07 12:00 |           |  |            |           |       |
| Calcium                   | 470                      | 50                 | mg/kg    | 1         |  | 07-Nov-07  | EPA 7140  |       |
| Antimony                  | ND                       | 2.0                | ч        | н         |  | 31-Oct-07  | EPA 6020A | -     |
| Arsenic                   | 2.8                      | 1.0                | ч        | н         |  | 11         | n         |       |
| Barium                    | 87                       | 5.0                | 9        | H         |  | "          | п         |       |
| Beryllium                 | ND                       | 1.0                | я        | u         |  | u          | n         |       |
| Cadmium                   | ND                       | 1.0                | u        | น         |  | u          | п         |       |
| Chromium                  | 28                       | 1.0                | u .      | u         |  | u          | n         |       |
| Cobalt                    | 4,2                      | 1.0                | ч        | u         |  | п          | If        |       |
| Copper                    | 49                       | 2.0                | н        | н         |  | u          | н         |       |
| íron                      | 13000                    | 20                 | н        | 11        |  | u          | н         |       |
| Lead                      | 9,2                      | 1.0                | u        | u         |  | н          | "         |       |
|                           | 190                      | 20                 | u –      | บ         |  | , <b>u</b> | н         |       |
| Manganese                 |                          |                    |          |           |  | ·          |           |       |
| Manganese<br>Mercury      | ND                       | 0.1                | н        | ci        |  |            |           |       |
| Mercury                   |                          | 0.1<br>1.0         | н<br>11  | ti        |  | "          |           |       |
| ę.                        | ND                       |                    |          |           |  |            | 11<br>11  |       |

Approved By

Silver

Zinc

Thallium

Vanadium

Magnesium

Potassium

Sodium

## (209)581-9280 Fax (209)581-9280 Fax (209)581-9282 (209)581-9282 (209)581-9282

Work Order No.: H710050

#### Percent Moisture

| Analesta                  | Resul                    | Reporting<br>Limit | Units            | Dilution |          | Analyzed  | Method           | Notes    |
|---------------------------|--------------------------|--------------------|------------------|----------|----------|-----------|------------------|----------|
| Analyte                   |                          |                    |                  | Difution | <u></u>  | ,         |                  |          |
| WP-28 (H710050-01) Sludge |                          |                    | -07 12:00        | • •      | -<br>    |           |                  |          |
| % Moisture                | 39                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 | ·        |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct   | -07 12:00        |          |          |           |                  |          |
| % Moisture                | 25                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct   | -07 12:00        |          |          |           | · · · · ·        |          |
| % Moisture                | 34                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct   | -07 12:00        |          |          |           |                  |          |
| % Moisture                | 21                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct   | -07 12:00        |          | <i>e</i> |           | ۶                |          |
| % Moisture                | 21                       |                    | –<br>% by Weight | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct   | -07 12:00        |          |          |           |                  |          |
| % Moisture                | 22                       | · · · · ·          | % by Weight      | 1        | :        | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct   | -07 12:00        |          |          |           |                  |          |
| % Moisture                | 41                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct   | -07 12:00        |          |          |           |                  |          |
| % Moisture                | 30                       |                    | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct   | -07 12:00        |          |          |           |                  | <u> </u> |
| % Moisture                | 26                       | )                  | % by Weight      | 1        |          | 31-Oct-07 | ASTM<br>D2216-92 |          |

Approved By

| ConAgra Foods Inc.        |                              | Project Number: 102-   | 11       |   | have been and the second |                  |       |  |
|---------------------------|------------------------------|------------------------|----------|---|--------------------------|------------------|-------|--|
| 554 S. Yosemite Ave.      |                              | Project Name: Con.     |          | d | Work Order No.:          |                  |       |  |
| Oakdale, CA 95361         |                              | Project Manager:       |          |   |                          | H710050          |       |  |
|                           |                              | Percent Mois           | ture     |   |                          |                  |       |  |
|                           |                              |                        |          |   |                          |                  |       |  |
|                           |                              | Reporting              |          |   |                          |                  |       |  |
| Analyte                   | Result                       | Limit Units            | Dilution |   | Analyzed                 | Method           | Notes |  |
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 Rec | eived: 26-Oct-07 12:00 |          |   |                          |                  |       |  |
| % Moisture                | 39                           | % by Weight            | . 1      |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 Rec | eived: 26-Oct-07 12:00 |          |   | · ·                      |                  |       |  |
| % Moisture                | 31                           | % by Weight            | 1        |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 Rec | eived: 26-Oct-07 12:00 |          |   |                          |                  |       |  |
| % Moisture                | 27                           | % by Weight            | 1        |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 Rec | eived: 26-Oct-07 12:00 |          |   |                          | ·                |       |  |
| % Moisture                | 22                           | % by Weight            | 1        |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 Rec | eived: 26-Oct-07 12:00 |          |   |                          |                  |       |  |
| % Moisture                | 34                           | % by Weight            | 1        |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |
| VP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 Rec | eived: 26-Oct-07 12:00 | 1        |   |                          |                  |       |  |
| % Moisture                | 40                           | % by Weight            | 1        |   | 31-Oct-07                | ASTM<br>D2216-92 |       |  |

### Approved By

## @ITGOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | soul history and his |
|----------------------|------------------------------------|----------------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.:      |
| Oakdale, CA 95361    | Project Manager:                   | H710050              |
|                      |                                    |                      |

pH - EPA Method 150.1

|                          | ·                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resul                    | Reporting<br>it Limit                                                                                                                                                                                                                                                         | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sampled: 23-Oct-07 09:30 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.2                      | 2 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 09:50 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.9                      | 9 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 10:20 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.0                      | 0 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 10:40 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.2                      | 2 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 11:10 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.3                      | <b>3</b> 0.1                                                                                                                                                                                                                                                                  | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 11:30 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *;<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8,                       | 1 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 11:50 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12;00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.2                      | 2 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 12:20 | Received: 26-Oc                                                                                                                                                                                                                                                               | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.2                      | 2 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampled: 23-Oct-07 12:40 | Received: 26-Oct                                                                                                                                                                                                                                                              | -07 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.                       | 1 0.1                                                                                                                                                                                                                                                                         | pH Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31-Oct-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 150.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | Sampled: 23-Oct-07 09:30<br>8.7<br>Sampled: 23-Oct-07 09:50<br>7.5<br>Sampled: 23-Oct-07 10:20<br>8.7<br>Sampled: 23-Oct-07 10:40<br>8.7<br>Sampled: 23-Oct-07 11:10<br>8.7<br>Sampled: 23-Oct-07 11:50<br>8.7<br>Sampled: 23-Oct-07 12:20<br>8.7<br>Sampled: 23-Oct-07 12:20 | Result       Limit         Sampled: 23-Oct-07 09:30       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 09:50       Received: 26-Oct         7.9       0.1         Sampled: 23-Oct-07 10:20       Received: 26-Oct         8.0       0.1         Sampled: 23-Oct-07 10:20       Received: 26-Oct         8.0       0.1         Sampled: 23-Oct-07 10:40       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 11:10       Received: 26-Oct         8.3       0.1         Sampled: 23-Oct-07 11:30       Received: 26-Oct         8.3       0.1         Sampled: 23-Oct-07 11:30       Received: 26-Oct         8.1       0.1         Sampled: 23-Oct-07 11:50       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 11:50       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 12:20       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 12:20       Received: 26-Oct         8.2       0.1         Sampled: 23-Oct-07 12:20       Received: 26-Oct | Result       Linit       Units         Sampled: 23-Oct-07 09:30       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 09:50       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 10:20       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 10:20       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 10:20       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 10:40       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 11:40       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 11:40       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 11:40       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 11:50       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 12:20       Pit Units         Sampled: 23-Oct-07 12:20       Received: 26-Oct-07 12:00         Sampled: 23-Oct-07 12:20       Pit Units         Sampled: 23-Oct-07 12:20       Pit Units         Sampled: 23-Oct-07 12:20       Pit Units         Sampled: 23-Oct-07 12:20       Pit Units | Result         Limit         Units         Dilution           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         i           Sampled: 23-Oct-07 12:20         Received: 26-Oct-07 1 | Result         Limit         Units         Dilution           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         I         I           8.2         0.1         pH Units         I           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         I           7.9         0.1         pH Units         I           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         I           8.0         0.1         pH Units         I           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         I           8.2         0.1         pH Units         I           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         I           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         I           8.1         0.1         pH Units         I           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         I           8.1         0.1         pH Units         I           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         I           8.2         0.1         pH Units         I           Sampled: 23-Oct-07 12:20         Received: 26-Oct-07 12:00         I           Sampled: 23-Oct-07 12:20 <t< td=""><td>Result         Linit         Units         Dilution         Analyzed           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         1         31-Oct-07           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         1         31-Oct-07           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 2</td><td>Result         Limit         Units         Dilution         Analyzed         Method           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         9H Units         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         9H Units         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-0</td></t<> | Result         Linit         Units         Dilution         Analyzed           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         1         31-Oct-07           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         1         31-Oct-07           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:30         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:50         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 23-Oct-07 11:20         Received: 26-Oct-07 12:00         31-Oct-07           Sampled: 2 | Result         Limit         Units         Dilution         Analyzed         Method           Sampled: 23-Oct-07 09:30         Received: 26-Oct-07 12:00         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 09:50         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:20         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 10:40         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         9H Units         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-07 11:10         Received: 26-Oct-07 12:00         1         9H Units         1         31-Oct-07         EPA 150.1           Sampled: 23-Oct-0 |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

k

## @ Bon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

 ConAgra Foods Inc.
 Project Number: 102-11
 Image: ConAgra Acrated Pond

 554 S. Yosemite Ave.
 Project Name: ConAgra Acrated Pond
 Work Order No.:

 Oakdale, CA
 95361
 Project Manager: ----- H710050

 PH - EPA Method 150.1

#### Reporting Method Notes Dilution Analyzed Result Limit Units Analyte WP-61 (H710050-10) Sludge Sampled: 23-Oct-07 13:00 Received: 26-Oct-07 12:00 8.1 pH Units 31-Oct-07 EPA 150.1 0.1 1. pН WP-64 (H710050-11) Sludge Sampled: 23-Oct-07 13:15 Received: 26-Oct-07 12:00 31-Oct-07 EPA 150.1 7.4 0.1 pH Units 1 pН WP-65 (H710050-12) Sludge Sampled: 23-Oct-07 13:30 Received: 26-Oct-07 12:00 31-Oct-07 EPA 150.1 pН 7.9 0.1 pH Units 1 WP-66 (H710050-13) Sludge Sampled: 23-Oct-07 14:44 Received: 26-Oct-07 12:00 8.0 0.1 pH Units 31-Oct-07 EPA 150.1 1 pН WP-67 (H710050-14) Sludge Sampled: 23-Oct-07 15:18 Received: 26-Oct-07 12:00 EPA 150.1 31-Oct-07 8.0 0.1 pH Units 1 pН WP-72 (H710050-15) Sludge Sampled: 23-Oct-07 15:20 Received: 26-Oct-07 12:00 31-Oct-07 EPA 150.1 8.1 0,1 pH Units 1 pН

Approved By

#### @1753@11 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 ConAgra Foods Inc. Project Number: 102-11 Project Name: ConAgra Aerated Pond Work Order No .: 554 S. Yosemite Ave. Oakdale, CA 95361 H710050 Project Manager: -----Phosphorous Reporting Method Notes Dilution Analyzed Limit Units Result Analyte WP-28 (H710050-01) Sludge Sampled: 23-Oct-07 09:30 Received: 26-Oct-07 12:00 01-Nov-07 88.0 .......... 1.0 mg/kg 1 Phosphorous as P - Bray Method WP-30 (H710050-02) Sludge Sampled: 23-Oct-07 09:50 Received: 26-Oct-07 12:00 01-Nov-07 1 .......... 84.0 1.0 mg/kg Phosphorous as P - Bray Method WP-31 (H710050-03) Sludge Sampled: 23-Oct-07 10:20 Received: 26-Oct-07 12:00 01-Nov-07 ------76.0 1.0 1 mg/kg Phosphorous as P - Bray Method WP-32 (H710050-04) Sludge Sampled: 23-Oct-07 10:40 Received: 26-Oct-07 12:00 01-Nov-07 -----90.0 1.0 í mg/kg Phosphorous as P - Bray Method WP-43 (H710050-05) Sludge Sampled: 23-Oct-07 11:10 Received: 26-Oct-07 12:00 ..... 86.0 1 01-Nov-07 1.0 mg/kg Phosphorous as P - Bray Method WP-47 (H710050-06) Sludge Sampled: 23-Oct-07 11:30 Received: 26-Oct-07 12:00 01-Nov-07 94.0 1.0 1 ..... mg/kg Phosphorous as P - Bray Method WP-48 (H710050-07) Sludge Sampled: 23-Oct-07 11:50 Received: 26-Oct-07 12:00 58.0 1.0 1 01-Nov-07 ..... Phosphorous as P - Bray Method mg/kg WP-53 (H710050-08) Sludge Sampled: 23-Oct-07 12:20 Received: 26-Oct-07 12:00 01-Nov-07 82.0 1.0 mg/kg 1 -----Phosphorous as P - Bray Method WP-59 (H710050-09) Sludge Sampled: 23-Oct-07 12:40 Received: 26-Oct-07 12:00

78.0

1.0

mg/kg

1

01-Nov-07

-----

Approved By

Phosphorous as P - Bray Method

#### 

 ConAgra Foods Inc.
 Project Number: 102-11
 Image: 102-11

 554 S. Yosemite Ave.
 Project Name: ConAgra Aerated Pond
 Work Order No.:

 Oakdale, CA
 95361
 Project Manager: ----- H710050

### Phosphorous

| Analyte                     | Resul                    | Reporting<br>It Limit | Units              | Dilution | ·<br>· | Analyzed  | Method    | Note |
|-----------------------------|--------------------------|-----------------------|--------------------|----------|--------|-----------|-----------|------|
| WP-61 (H710050-10) Sludge   | Sampled: 23-Oct-07 13:00 | Received: 26-Oct-     | -07 12:00          |          |        | t         |           |      |
| Phosphorous as P - Bray Met | hod 100                  | 6 1.0                 | mg/kg              | 1        |        | 01-Nov-07 |           |      |
| WP-64 (H710050-11) Sludge   | Sampled: 23-Oct-07 13:15 | Received: 26-Oct      | -07 12:00          |          |        | ·         | · .       |      |
| Phosphorous as P - Bray Met | hod 46,1                 | 0 1.0                 | mg/kg              | 1        |        | 01-Nov-07 |           |      |
| WP-65 (H710050-12) Sludge   | Sampled: 23-Oct-07 13:30 | Received: 26-Oct      | -07 12:00          |          |        |           |           |      |
| Phosphorous as P - Bray Met | hod 114                  | 4 1.0                 | mg/kg              | 1        |        | 01-Nov-07 |           |      |
| WP-66 (H710050-13) Sludge   | Sampled: 23-Oct-07 14:44 | Received: 26-Oct      | -07 12:00          |          |        |           |           |      |
| Phosphorous as P - Bray Met | hod 82.0                 | 0 1.0                 | mg/kg              | 1        |        | 01-Nov-07 |           |      |
| WP-67 (H710050-14) Sludge   | Sampled: 23-Oct-07 15:18 | Received: 26-Oct-     | -07 1 <b>2</b> :00 |          | е а.   |           |           |      |
| Phosphorous as P - Bray Met | hod 114                  | 4 1.0                 | mg/kg              | . 1      |        | 01-Nov-07 |           | · .  |
| WP-72 (H710050-15) Sludge   | Sampled: 23-Oct-07 15:20 | Received: 26-Oct-     | -07 12:00          |          |        |           | . 1       |      |
| Phosphorous as P - Bray Met | hod 12:                  | 2 1.0                 | mg/kg              | 1        |        | 01-Nov-07 | ********* |      |

#### Approved By

## المجامعة (209)581-9280 Fax (209)581-9280 Fax (209)581-9282 ها المجامعة المحافة المح

| argon laboratories                    | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | A               |
|---------------------------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.                    | Project Number: 102-11                                             | - Commente      |
| 554 S. Yosemite Ave.                  | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361                     | Project Manager:                                                   | H710050         |
| · · · · · · · · · · · · · · · · · · · | Sodium Absorption Ratio                                            | -               |

| Analyte                   | Resul                    | Reportin<br>t Lim | •                    | Dilution |   | Analyz | zed Method | Notes                                   |
|---------------------------|--------------------------|-------------------|----------------------|----------|---|--------|------------|-----------------------------------------|
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 | Received: 26-C    | 0ct-07 12:00         |          |   |        |            | 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - |
| Sodium Absorption Ratio   | 0,70                     | 0.1               | 0 N/A                | 1        |   | 07-Nov | -07 SAR    | t                                       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-C    | oct-07 12:00         | ÷ .      |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.70                     | 0.1               | 0 N/A                | 1        |   | 07-Nov | -07 SAR    | u.                                      |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-C    | Det-07 12:00         | · .      | : |        |            | 1.0                                     |
| Sodium Absorption Ratio   | 0.60                     | 0.1               | 0 N/A                | 1        |   | 07-Nov | -07 SAR    |                                         |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-C    | 0ct-07 <u>12</u> :00 |          |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.80                     | 0.1               | 0 N/A                | 1        |   | 07-Nov | -07 SAR    | · ·                                     |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-C    | Oct-07 12:00         |          |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.70                     | 0.1               | 0 N/A                | 1        |   | 07-Nov | -07 SAR    |                                         |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-C    | Oct-07 12:00         |          |   |        |            |                                         |
| Sodium Absorption Ratio   |                          | ) 0.1             | 0 N/A                | 1        |   | 07-Nov | -07 SAR    |                                         |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-0    | )ct-07 12:00         |          |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.70                     | ) 0.1             | 0 N/A                | 1        |   | 07-Nov | 7-07 SAR   |                                         |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-0    | Oct-07 12:00         |          |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.6                      | ) 0.1             | 0 N/A                | 1        |   | 07-Nov | -07 SAR    |                                         |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-0    | Oct-07 12:00         |          |   |        |            |                                         |
| Sodium Absorption Ratio   | 0.6                      | ) 0.1             | 0 N/A                | 1        |   | 07-Nov | -07 SAR    |                                         |
|                           |                          |                   |                      |          |   |        |            |                                         |

Approved By

## 

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | I I             |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and a similar   |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050         |
|                      | Sodium Absorption Ratio                                            |                 |

|                           | 1                        |                         |             |          |                 |           |        |       |
|---------------------------|--------------------------|-------------------------|-------------|----------|-----------------|-----------|--------|-------|
| Analyte                   | Resu                     | Reporting<br>It . Limit | -           | Dilution | 1 <sup>94</sup> | Analyzed  | Method | Notes |
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-O          | ct-07 12:00 |          |                 |           |        |       |
| Sodium Absorption Ratio   | 0.7                      | 0 0.10                  | N/A         | 1        |                 | 07-Nov-07 | SAR    |       |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 | Received: 26-O          | ct-07 12:00 |          |                 | ·.        |        |       |
| Sodium Absorption Ratio   | 0,9                      | 0 0.10                  | N/A         | 1        |                 | 07-Nov-07 | SAR    |       |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 | Received: 26-O          | ct-07 12:00 |          |                 |           |        |       |
| Sodium Absorption Ratio   | 0.7                      | 0 0.10                  | N/A         | 1        |                 | 07-Nov-07 | SAR    |       |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-O          | ct-07 12:00 |          | · .             |           |        |       |
| Sodium Absorption Ratio   | 0.8                      | 0 0.10                  | N/A         | 1        |                 | 07-Nov-07 | SAR    |       |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-O          | et-07 12:00 |          | .*              |           |        |       |
| Sodium Absorption Ratio   | 0.7                      | 0 0.10                  | N/À         | . 1      |                 | 07-Nov-07 | SAR    |       |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 | Received: 26-O          | et-07 12:00 |          |                 | · .       |        |       |
| Sodium Absorption Ratio   | 0.6                      | 0 0.10                  | N/A         | 1        |                 | 07-Nov-07 | SAR    |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

## داند المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد (209)581-9280 Fax (209)581-9282 المحمد (209)581-9282 المحمد المحم المحمد الم

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 |                    |
|----------------------|--------------------------------------------------------------------|--------------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | and Manhamatica PC |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.:    |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050            |
|                      |                                                                    |                    |

### Specific Conductance (EC) - EPA Method 120.1

| Analyte                        | Resul                    | Reporting<br>t Limit | Units       | Dilution |       | Analyzed  | Method    | Notes                                                                                                           |
|--------------------------------|--------------------------|----------------------|-------------|----------|-------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------|
| WP-28 (H710050-01) Sludge      | Sampled: 23-Oct-07 09:30 | Received: 26-Oc      | t-07 12:00  |          |       | •.        | ,         | -                                                                                                               |
| Specific conductance           | 3000                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 | · · ·                                                                                                           |
| WP-30 (H710050-02) Sludge      | Sampled: 23-Oct-07 09:50 | Received: 26-Oc      | t-07 12:00  |          |       | -         |           |                                                                                                                 |
| Specific conductance           | 1800                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| WP-31 (H710050-03) Sludge      | Sampled: 23-Oct-07 10:20 | Received: 26-Oc      | t-07 12:00  | *        |       |           |           |                                                                                                                 |
| Specific conductance           | 4100                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 |                                                                                                                 |
| WP-32 (H710050-04) Sludge      | Sampled: 23-Oct-07 10:40 | Received: 26-Oc      | t-07 12:00  |          |       |           |           |                                                                                                                 |
| Specific conductance           | 7000                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120,1 |                                                                                                                 |
| WP-43 (H710050-05) Sludge      | Sampled: 23-Oct-07 11:10 | Received: 26-Oc      | t-07 12:00  |          |       |           |           |                                                                                                                 |
| Specific conductance           | 6900                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 |                                                                                                                 |
| WP-47 (H710050-06) Sludge      | Sampled: 23-Oct-07 11:30 | Received: 26-Oc      | t-07 12:00  |          | · · · |           |           | • V                                                                                                             |
| Specific conductance           | 5900                     | ) 5.0                | umbos/cm    | 1        |       | 30-Oct-07 | EPA 120,1 |                                                                                                                 |
| WP-48 (H710050-07) Sludge      | Sampled: 23-Oct-07 11:50 | Received: 26-Oc      | t-07 12:00: |          |       |           |           |                                                                                                                 |
| Specific conductance           | 6201                     | ) 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 |                                                                                                                 |
| WP-53 (H710050-08) Sludge      | Sampled: 23-Oct-07 12:20 | Received: 26-Oc      | :t-07 12:00 |          |       |           |           |                                                                                                                 |
| Specific conductance           | 460                      | 0 5.0                | umhos/cm    | 1        |       | 30-Oct-07 | EPA 120.1 |                                                                                                                 |
| -<br>WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-O       | t-07 12:00  |          |       |           |           |                                                                                                                 |
| Specific conductance           | 720                      |                      |             | 1        |       | 30-Oct-07 | EPA 120.1 |                                                                                                                 |

· Approved By

## المحمد (209) المحمد المحمد (209) المحمد المحمد (209) المحمد ا

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361

### Project Number: 102-11 Project Name: ConAgra Aerated Pond Project Manager: ------

Work Order No.: H710050

### Specific Conductance (EC) - EPA Method 120.1

| Analyte                   | Resu                     | Reporting        | Units              | Dilution | :       | Analyzed  | Method    | Note  |
|---------------------------|--------------------------|------------------|--------------------|----------|---------|-----------|-----------|-------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-Oct | t-07 12:00         |          |         |           |           |       |
| Specific conductance      | 390                      | 0 5.0            | umhos/cm           | 1        |         | 30-Oct-07 | EPA 120,1 |       |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 | Received: 26-Oct | -07 12:00          |          | · · · · |           | . •       | ·     |
| Specific conductance      | 250                      | 0 5.0            | umhos/cm           | 1        |         | 30-Oct-07 | EPA 120.1 | 1 . · |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 | Received: 26-Oct | -07 12:00          | · ·      |         | · .       |           | :     |
| Specific conductance      | 460                      | 0 5.0            | umhos/cm           | 1        |         | 30-Oct-07 | EPA 120,1 |       |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-Oct | -07 12:00          |          |         |           |           |       |
| Specific conductance      | 5400                     | <b>0</b> 5.0     | umhos/cm           | 1        |         | 30-Oct-07 | EPA 120.1 |       |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct | -07 12:00          |          | · · .   |           |           | ·     |
| Specific conductance      | 430                      | 0 5.0            | umhos/cm           | . 1      |         | 30-Oct-07 | EPA 120,1 | •     |
| WP-72 (H710050-15) Słudge | Sampled: 23-Oct-07 15:20 | Received: 26-Oct | -07 1 <b>2:</b> 00 |          |         |           |           |       |
| Specific conductance      | 270                      | 0 5.0            | umhos/cm           | 1        |         | 30-Oct-07 | EPA 120,1 |       |
|                           |                          |                  |                    | •        |         |           |           |       |

Approved By

## دان المحمد والمحمد والمحم والمحمد والم

ConAgra Foods Inc.Project Number:102-11Image: ConAgra Acrated Pond554 S. Yosemite Ave,Project Name:ConAgra Acrated PondWork Order No.:Oakdale, CA95361Project Manager:H710050

### Total Dissolved Solids - EPA Method 160.1

| Analyte                   | Resul                    | Reporting<br>It Limit | Units              | Dilution       |           | Analyzed  | Method    | Notes |
|---------------------------|--------------------------|-----------------------|--------------------|----------------|-----------|-----------|-----------|-------|
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 | Received: 26-Oct-     | 07 12:00           |                |           |           |           |       |
| Total Dissolved Solids    | 410                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct-     | 07 12:00           | . <del>.</del> |           |           |           |       |
| Total Dissolved Solids    | 330                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct-     | 07 12:00           |                |           | · .       |           |       |
| Total Dissolved Solids    | 360                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct-     | 07 12:00           |                |           |           |           |       |
| Total Dissolved Solids    | 240                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct-     | -07 1 <b>2:</b> 00 | 1              | · · ·     |           |           |       |
| Total Dissolved Solids    | 150                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct-     | -07 12;00          | :              |           |           |           |       |
| Total Dissolved Solids    | 260                      | 0 10                  | mg/Ľ               | 1              |           | 31-Oct-07 | EPA 160,1 |       |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct      | -07 12:00          |                |           |           |           |       |
| Total Dissolved Solids    | 230                      | 0 10                  | mg/L               | 1              |           | 31-Oct-07 | EPA 160.1 |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct-     | -07 12:00          |                |           |           |           |       |
| Total Dissolved Solids    | 220                      | 0 10                  | mg/L               | 1              | <u></u>   | 31-Oct-07 | EPA 160.1 |       |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct      | -07 12:00          |                |           |           |           |       |
| Total Dissolved Solids    | 170                      | 0 10                  | mg/L               | 1              | · · · · · | 31-Oct-07 | EPA 160.1 |       |
|                           |                          |                       |                    |                |           |           |           |       |

Approved By

## المحمد (209)581-9280 Fax (209)581-9282 Eligion laboratories

| ConAgra Foods Inc.   | Project Number: 102-11             | and in march    |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |

#### Total Dissolved Solids - EPA Method 160.1

| Analyte                   | Resul                    | Reporting<br>t Limit | Units               | Dilution |       | Analyzed      | Method    | Notes   |
|---------------------------|--------------------------|----------------------|---------------------|----------|-------|---------------|-----------|---------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-Oct     | t-07 12:00          | · .      |       |               |           |         |
| Total Dissolved Solids    | 1300                     | ) 10                 | mg/L                | 1        |       | 31-Oct-07     | EPA 160.1 |         |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 | Received: 26-Oct     | t-07 12:00          |          |       | ·             | : *       | • 1. 1. |
| Total Dissolved Solids    | 6000                     | ) 10                 | mg/L                | 1        |       | <br>31-Oct-07 | EPA 160.1 | · .     |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 | Received: 26-Oct     | t-07 12:00          |          | ··· · |               |           |         |
| Total Dissolved Solids    | 2400                     | ) 10                 | mg/L                | 1        |       | 31-Oct-07     | EPA 160.1 |         |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-Oct     | t-07 12:00          |          |       |               |           | •       |
| Total Dissolved Solids    | 1900                     | ) 10                 | mg/L                | 1        | -     | 31-Oct-07     | EPA 160.1 | -<br>   |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct     | t-07 1 <b>2:</b> 00 |          | _     | <br>-         |           |         |
| Total Dissolved Solids    | 1700                     | ) 10                 | mg/L                | 1        |       | <br>31-Oct-07 | EPA 160.1 |         |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 | Received: 26-Oct     | t-07 1 <b>2:</b> 00 |          |       |               |           |         |
| Total Dissolved Solids    | 2000                     | ) 10                 | mg/L                | 1        |       | 31-Oct-07     | EPA 160.1 |         |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

A

## الكَتْرَيْنَ المُحْدَمَة المُحْدَة (209) 1 Aboratories 2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

ConAgra Foods Inc. 554 S. Yosemite Ave. Oakdale, CA 95361 Project Number: 102-11 Project Name: ConAgra Aerated Pond 

## Project Manager: ------Total Fixed Solids

|                           |                          |                       |           |          | <br>          |          |       |
|---------------------------|--------------------------|-----------------------|-----------|----------|---------------|----------|-------|
| Analyte                   | Resul                    | Reporting<br>It Limit | Units     | Dilution | Analyzed      | Method   | Notes |
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 31000                    | 0 50                  | mg/L      | ì        | 03-Nov-07     | SM 2540A |       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct      | -07 12:00 |          | <br>1         | 5 A      |       |
| Total Fixed Solids        | 27000                    | ) 50                  | mg/L      | 1        | 03-Nov-07     | SM 2540A |       |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 21000                    | ) 50                  | mg/L      | 1        | <br>03-Nov-07 | SM 2540A |       |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 11000                    | 0 50.                 | mg/L      | 1        | 03-Nov-07     | SM 2540A |       |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 13000                    | 0 50                  | mg/L      | 1        | 03-Nov-07     | SM 2540A |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct      | -07 12:00 |          |               |          | *:    |
| Total Fixed Solids        | 14900                    | 0 50                  | mg/L      | 1        | 03-Nov-07     | SM 2540A |       |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 38000                    | ) 50                  | mg/L      | 1        | <br>03-Nov-07 | SM 2540A |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct      | -07 12:00 |          |               |          |       |
| Total Fixed Solids        | 22000                    | 0 50                  | mg/L      | 1        | <br>03-Nov-07 | SM 2540A |       |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct      | 07 12:00  |          |               |          |       |
| Total Fixed Solids        | 12000                    | 0 50                  | mg/L      | 1        | <br>03-Nov-07 | SM 2540A |       |
|                           |                          |                       |           |          |               |          |       |

Approved By

## الله المحمد المحمد المحمد (209)581-9280 Fax (209)581-9282 Fax (209)581-9282 آله المحمد (209)581-9282

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282                                                                  | N = A           |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| ConAgra Foods Inc.   | Agra Foods Inc. Project Number: 102-11<br>B. Yosemite Ave. Project Name: ConAgra Aerated Pond<br>Project Name: ConAgra Aerated Pond |                 |  |  |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                                                                                  | Work Order No.: |  |  |
| Oakdale, CA 95361    | Project Manager:                                                                                                                    | H710050         |  |  |
|                      | Total Fixed Solids                                                                                                                  |                 |  |  |

|                           | · · · · · · · · · · · · · · · · |                      |          |          |       |           |          |      |
|---------------------------|---------------------------------|----------------------|----------|----------|-------|-----------|----------|------|
| Analyte                   | Result                          | Reporting<br>t Limit | Units    | Dilution |       | Analyzed  | Method   | Note |
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00        | Received: 26-Oct-    | 07 12:00 |          |       |           | 1        |      |
| Total Fixed Solids        | 400000                          | ) 50                 | mg/L     | . 1      | · · · | 03-Nov-07 | SM 2540A |      |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15        | Received: 26-Oct-    | 07 12:00 |          |       | • .       |          |      |
| Total Fixed Solids        | 200000                          | ) 50                 | mg/L     | 1        |       | 03-Nov-07 | SM 2540A |      |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30        | Received: 26-Oct-    | 07 12:00 |          |       |           |          |      |
| Total Fixed Solids        | 180000                          | ) . 50               | mg/L     | 1        |       | 03-Nov-07 | SM 2540A |      |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44        | Received: 26-Oct-    | 07 12:00 |          |       |           |          |      |
| Total Fixed Solids        | 130000                          | 50                   | mg/L     | 1        |       | 03-Nov-07 | SM 2540A |      |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18        | Received: 26-Oct-    | 07 12:00 |          |       |           |          |      |
| Total Fixed Solids        | 290000                          | 50                   | mg/L     | 1        |       | 03-Nov-07 | SM 2540A |      |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20        | Received: 26-Oct-    | 07 12:00 |          | · .   |           |          |      |
| Total Fixed Solids        | 300000                          | 50                   | mg/L     | 1        |       | 03-Nov-07 | SM 2540A |      |

Approved By

# ConAgra Foods Inc. Project Number: 102-11 554 S. Yosemite Ave. Project Name: ConAgra Aerated Pond Oakdale, CA 95361 Project Manager: -----

Total Kjeldahl Nitrogen by EPA 351.2

| Analyte                   | Resu                     | Reporting<br>lt Limit | Units     | Dilution |   | Analyzed  | Method      | Notes |
|---------------------------|--------------------------|-----------------------|-----------|----------|---|-----------|-------------|-------|
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 | Received: 26-Oct      | -07 12:00 |          |   |           |             | •.    |
| Total Kjeldahl Nitrogen   | . 170                    | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 160                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct      | -07 12:00 |          |   |           | · .         |       |
| Total Kjeldahl Nitrogen   | 170                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 300                      | 0 5.0                 | mg/kg     | í        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 320                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 240                      | 0 5.0                 | mg/kg     | 1        | • | 30-Oct-07 | SM 4500-N B |       |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 240                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 280                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct      | -07 12:00 |          |   |           |             |       |
| Total Kjeldahl Nitrogen   | 250                      | 0 5.0                 | mg/kg     | 1        |   | 30-Oct-07 | SM 4500-N B |       |
|                           |                          |                       |           |          |   |           |             |       |

Approved By

## @1301 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Food  | s Inc.  |
|---------------|---------|
| 554 S. Yosemi | te Ave, |
| Oakdale, CA   | 95361   |

### Project Number: 102-11 Project Name: ConAgra Aerated Pond

Work Order No.: H710050

Project Manager: -----

### Total Kjeldahl Nitrogen by EPA 351.2

| Analyte                   | Result                     | Reporting<br>Limit | Units             | Dilution |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyzed  | Method        | Notes |
|---------------------------|----------------------------|--------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 R | eceived: 26-Oct-   | 07 1 <b>2:</b> 00 |          | • :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |               |       |
| Total Kjeldahl Nítrogen   | 1600                       | 5.0                | mg/kg             | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 R | eceived: 26-Oct-   | 07 <b>12:</b> 00  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -         |               |       |
| Total Kjeldahl Nitrogen   | 1300                       | 5.0                | mg/kg             | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 R | eceived: 26-Oct-   | 07 1 <b>2:</b> 00 |          | 1. S. |           | 10 - 10<br>10 |       |
| Total Kjeldahl Nitrogen   | 2000                       | 5.0                | mg/kg             | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 R | eceived: 26-Oct-   | 07 1 <b>2</b> :00 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |               |       |
| Total Kjeldabl Nitrogen   | 1200                       | 5.0                | mg/kg             | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 R | eceived: 26-Oct-   | <b>07</b> 12:00   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |               |       |
| Total Kjeldahl Nitrogen   | 1800                       | 5.0                | mg/kg             | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 R | eceived: 26-Oct-   | 07 12:00          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |               |       |
| Total Kjeldahl Nitrogen   | 2600                       | 5.0                | mg/kg             | 1 -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30-Oct-07 | SM 4500-N B   |       |

Approved By

## المجامعة: (209)581-9280 Eax (209)581-9280 Fax (209)581-9282 Eax (209)581-9282 Eax (209)581-9282 Eax (209)581-9282

ConAgra Foods Inc.Project Number:102-11Automatic554 S. Yosemite Ave.Project Name:ConAgra Aerated PondWork Order No.:Oakdale, CA95361Project Manager:H710050

#### Total Nitrogen

|                           |                          |                       |           |          | <br>          | ···        |       |
|---------------------------|--------------------------|-----------------------|-----------|----------|---------------|------------|-------|
| Analyte                   | Resu                     | Reporting<br>it Limit | Units     | Dilution | Analyzed      | Method     | Notes |
| WP-28 (H710050-01) Sludge | Sampled: 23-Oct-07 09:30 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nitrogen as N       | 1700                     | 0 1.0                 | mg/kg     | 1        | <br>07-Nov-07 | SM 4500 NC |       |
| WP-30 (H710050-02) Sludge | Sampled: 23-Oct-07 09:50 | Received: 26-Oct      | -07 12;00 |          |               |            |       |
| Total Nitrogen as N       | 1600                     | 0 1.0                 | mg/kg     | 1        | <br>07-Nov-07 | SM 4500 NC |       |
| WP-31 (H710050-03) Sludge | Sampled: 23-Oct-07 10:20 | Received: 26-Oct      | -07 12:00 |          | <br>          |            |       |
| Total Nitrogen as N       | 1700                     | 0 1.0                 | mg/kg     | 1        | 07-Nov-07     | SM 4500 NC |       |
| WP-32 (H710050-04) Sludge | Sampled: 23-Oct-07 10:40 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nifrogen as N       | 3000                     | 0 1.0                 | mg/kg     | 1        | 07-Nov-07     | SM 4500 NC |       |
| WP-43 (H710050-05) Sludge | Sampled: 23-Oct-07 11:10 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nitrogen as N       | 3200                     | ) 1.0                 | mg/kg     | 1        | 07-Nov-07     | SM 4500 NC |       |
| WP-47 (H710050-06) Sludge | Sampled: 23-Oct-07 11:30 | Received: 26-Oct      | -07 12:00 |          |               | 1 . J.     |       |
| Total Nitrogen as N       | 2400                     | ) 1.0                 | mg/kg     | 1        | 07-Nov-07     | SM 4500 NC |       |
| WP-48 (H710050-07) Sludge | Sampled: 23-Oct-07 11:50 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nitrogen as N       | 2400                     | ) 1.0                 | mg/kg     | 1        | <br>07-Nov-07 | SM 4500 NC |       |
| WP-53 (H710050-08) Sludge | Sampled: 23-Oct-07 12:20 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nitrogen as N       | 2800                     | 0 1.0                 | mg/kg     | 1        | <br>07-Nov-07 | SM 4500 NC |       |
| WP-59 (H710050-09) Sludge | Sampled: 23-Oct-07 12:40 | Received: 26-Oct      | -07 12:00 |          |               |            |       |
| Total Nitrogen as N       | 2500                     | ) 1.0                 | mg/kg     | 1        | <br>07-Nov-07 | SM 4500 NC |       |
|                           |                          |                       |           |          |               |            |       |

Approved By

## @Rgom laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | - alla ad       |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
|                      |                                    |                 |

#### Total Nitrogen

| Analyte                   | Result                   | Reporting<br>Limit | Units             | Dilution | Analyzed  | Method     | Notes   |
|---------------------------|--------------------------|--------------------|-------------------|----------|-----------|------------|---------|
| WP-61 (H710050-10) Sludge | Sampled: 23-Oct-07 13:00 | Received: 26-Oct-  | 07 12:00          |          |           |            |         |
| Total Nitrogen as N       | 1600                     | 1.0                | mg/kg             | 1        | 07-Noy-07 | SM 4500 NC |         |
| WP-64 (H710050-11) Sludge | Sampled: 23-Oct-07 13:15 | Received: 26-Oct-  | 07 12:00          |          | ·7        |            |         |
| Total Nitrogen as N       | 1300                     | 1.0                | mg/kg             | i        | 07-Noy-07 | SM 4500 NC |         |
| WP-65 (H710050-12) Sludge | Sampled: 23-Oct-07 13:30 | Received: 26-Oct-  | 07 12:00          |          |           |            |         |
| Total Nitrogen as N       | 2000                     | 1.0                | mg/kg             | 1        | 07-Nov-07 | SM 4500 NC |         |
| WP-66 (H710050-13) Sludge | Sampled: 23-Oct-07 14:44 | Received: 26-Oct-  | 07 12:00          |          |           |            |         |
| Total Nitrogen as N       | 1200                     | 1.0                | mg/kg             | 1        | 07-Nov-07 | SM 4500 NC |         |
| WP-67 (H710050-14) Sludge | Sampled: 23-Oct-07 15:18 | Received: 26-Oct-  | 07 12:00          | е.       |           |            |         |
| Total Nitrogen as N       | 1800                     | 1.0                | mg/kg             | . 1      | 07-Nov-07 | SM 4500 NC |         |
| WP-72 (H710050-15) Sludge | Sampled: 23-Oct-07 15:20 | Received: 26-Oct-  | 07 1 <b>2:</b> 00 |          |           |            | · · · · |
| Total Nitrogen as N       | 2600                     | 1.0                | mg/kg             | 1        | 07-Nov-07 | SM 4500 NC |         |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

l

## @ITSOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.                    | Project Number: 102-11             | sint himsent    |
|---------------------------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave,                  | Project Name: ConAgra Acrated Pond | Work Order No.: |
| Oakdale, CA 95361                     | Project Manager:                   | H710050         |
| · · · · · · · · · · · · · · · · · · · | Total Organic Carbon               |                 |

#### Reporting Analyzed Method Notes Units Dilution Analyte Result Limít WP-28 (H710050-01) Sludge Sampled: 23-Oct-07 09:30 Received: 26-Oct-07 12:00 SM5310B 23000 í. 01-Nov-07 **Total Organic Carbon** 200 mg/kg WP-30 (H710050-02) Sludge Sampled: 23-Oct-07 09:50 Received: 26-Oct-07 12:00 21000 200 1 01-Nov-07 SM5310B **Total Organic Carbon** mg/kg Sampled: 23-Oct-07 10:20 Received: 26-Oct-07 12:00 WP-31 (H710050-03) Sludge 21000 200 1 01-Nov-07 SM5310B **Total Organic Carbon** mg/kg Sampled: 23-Oct-07 10:40 Received: 26-Oct-07 12:00 WP-32 (H710050-04) Sludge 01-Nov-07 SM5310B 21000 200 mg/kg 1 **Total Organic Carbon** Sampled: 23-Oct-07 11:10 Received: 26-Oct-07 12:00 WP-43 (H710050-05) Sludge SM5310B 1 01-Nov-07 **Total Organic Carbon** 17000 200 mg/kg WP-47 (H710050-06) Sludge Sampled: 23-Oct-07 11:30 Received: 26-Oct-07 12:00 SM5310B 20000 200 1 01-Nov-07 **Total Organic Carbon** mg/kg WP-48 (H710050-07) Sludge Sampled: 23-Oct-07 11:50 Received: 26-Oct-07 12:00 01-Nov-07 SM5310B 15000 1 200 **Total Organic Carbon** mg/kg WP-53 (H710050-08) Sludge Sampled: 23-Oct-07 12:20 Received: 26-Oct-07 12:00 SM5310B 23000 1 01-Nov-07 200 mg/kg **Total Organic Carbon** WP-59 (H710050-09) Sludge Sampled: 23-Oct-07 12:40 Received: 26-Oct-07 12:00 SM5310B 21000 200 ì 01-Nov-07 **Total Organic Carbon** mg/kg

Approved By

| ConAgra Foods Inc.<br>554 S. Yosemite Aye.<br>Oakdale, CA 95361 | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |          | Work Order<br>H71005 |      |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------|----------|----------------------|------|
|                                                                 | Total Organic Carbon                                                             |          |                      |      |
|                                                                 |                                                                                  |          |                      |      |
| Analyte                                                         | Reporting<br>Result Limit Units Dilution                                         | Analyzed | Method               | Note |
|                                                                 | . 5                                                                              | Analyzed | Method               | Note |

SM5310B 32000 200 1 01-Nov-07 Total Organic Carbon mg/kg WP-65 (H710050-12) Sludge Sampled: 23-Oct-07 13:30 Received: 26-Oct-07 12:00 23000 I 200 mg/kg 01-Nov-07 SM5310B Total Organic Carbon WP-66 (H710050-13) Sludge Sampled: 23-Oct-07 14:44 Received: 26-Oct-07 12:00 19000 01-Nov-07 SM5310B 200 1 **Total Organic Carbon** mg/kg WP-67 (H710050-14) Sludge Sampled: 23-Oct-07 15:18 Received: 26-Oct-07 12:00 22000 01-Nov-07 SM5310B 200 1 Total Organic Carbon mg/kg WP-72 (H710050-15) Sludge Sampled: 23-Oct-07 15:20 Received: 26-Oct-07 12:00 27000 200 Total Organic Carbon mg/kg í 01-Nov-07 SM5310B

Approved By

| ConAgra Foods Inc.  | Project Number: 102-11             | and Citizensal C |
|---------------------|------------------------------------|------------------|
| 554 S. Yosemite Ave | Project Name: ConAgra Acrated Pond | Work Order No.:  |
| Oakdale, CA 95361   | Project Manager:                   | H710050          |

### **Argon Laboratories**

|                                 |        | Des estis          |        | Cuilto         | Course           |          | %REC   |     | RPD   |       |
|---------------------------------|--------|--------------------|--------|----------------|------------------|----------|--------|-----|-------|-------|
| Analyte                         | Result | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC     | Limits | RPD | Limit | Notes |
| Batch HQK0041 - General Prep    |        |                    |        |                |                  |          |        |     |       |       |
| Blank (HQK0041-BLK1)            |        | · ·                |        | Prepared &     | Analyzed:        | 10/30/07 | _      |     |       |       |
| Carbonate Alkalinity            | ND     | 5.0                | mg/kg  |                |                  |          |        |     |       |       |
| Bicarbonate Alkalinity          | ND     | 5.0                | ч      |                |                  |          |        |     |       |       |
| Hydroxide Alkalinity            | ND     | 5.0                | 11     |                |                  |          |        |     |       |       |
| Fotal Alkalinity                | ND     | 10                 | u      |                |                  |          |        |     |       |       |
| LCS (HQK0041-BS1)               |        |                    |        | Prepared &     | Analyzed:        | 10/30/07 |        |     |       |       |
| Fotal Alkalinity                | 100    |                    | mg/kg  | 100            |                  | 100      | 80-120 | . • |       |       |
| LCS Dup (HQK0041-BSD1)          |        |                    |        | Prepared &     | Analyzed:        | 10/30/07 |        |     |       |       |
| Fotal Alkalinity                | 100    |                    | mg/kg  | 100            |                  | 100      | 80-120 | 0   | 20    |       |
| Matrix Spike (HQK0041-MS1)      | Sou    | rce: H710050       | -02    | Prepared &     | Analyzed:        | 10/30/07 |        |     |       |       |
| Fotal Alkalinity                | 180    |                    | nıg/kg | 100            | 92               | 88       | 70-130 |     |       |       |
| Matrix Spike Dup (HQK0041-MSD1) | Sou    | rce: H710050       | -02    | Prepared &     | Analyzed:        | 10/30/07 |        |     |       |       |
| Total Alkalinity                | 200    |                    | mg/kg  | 100            | 92               | 108      | 70-130 | 11  | 20    |       |

Approved By

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |                    |          |                |                  |            |                |     | Work Order No.:<br>H710050 |       |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|----------|----------------|------------------|------------|----------------|-----|----------------------------|-------|--|
| ·                                                               | Anions by Ion Ch                                                                 | iromatograp        | hy - EPA | Method 3       | )0.0 - Qua       | lity Contr | ol             |     |                            |       |  |
| Argon Laboratories                                              |                                                                                  |                    |          |                |                  |            |                |     | · · .                      |       |  |
| Analyte                                                         | Result                                                                           | Reporting<br>Limit | Units    | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit               | Notes |  |
| Batch HQK0051 - General Prep                                    |                                                                                  |                    |          |                |                  |            |                |     |                            |       |  |
| llank (HQK0051-BLK1)                                            | ·                                                                                |                    |          | Prepared &     | : Analyzed:      | 11/05/07   |                |     |                            |       |  |
| hloride                                                         | ND                                                                               | 10                 | mg/kg    |                |                  |            |                |     |                            |       |  |
| itrate                                                          | ND                                                                               | 1.0                | н        |                |                  |            |                |     |                            |       |  |
| CS (HQK0051-BS1)                                                |                                                                                  |                    |          | Prepared &     | Analyzed:        | 11/05/07   |                |     |                            |       |  |
| hloride                                                         | 1.7                                                                              | 10                 | mg/kg    | 2.00           |                  | 85         | 70-130         |     |                            |       |  |
| litrate                                                         | 3.6                                                                              | 1.0                | n        | 4.00           |                  | 90         | 70-130         |     |                            |       |  |
| 1atrix Spike (HQK0051-MS1)                                      | Sou                                                                              | ree: H710050-      | 01       | Prepared &     | : Analyzed:      | 11/05/07   |                |     |                            |       |  |
| hloride                                                         | 95.7                                                                             | 10                 | mg/kg    | 2.00           | 94               | 85         | 70-130         |     |                            |       |  |
| litrate                                                         | 8,3                                                                              | 1.0                | 11       | 4.00           | 4.7              | 90         | 70-130         |     |                            |       |  |

| Matrix Spike Dup (HQK0051-MSD1) | Source | H710050 | 01    | Prepared & | Analyzed: | 11/05/07 |        |     | 1  |
|---------------------------------|--------|---------|-------|------------|-----------|----------|--------|-----|----|
| Chloride                        | 95.8   | 10      | mg/kg | 2.00       | 94        | 90       | 70-130 | 0.1 | 20 |
| Nitrate                         | 8.3    | 1.0     | u     | 4,00       | 4.7       | 90       | 70-130 | 0   | 20 |
|                                 | ÷      |         |       |            |           |          |        |     |    |

Approved By

## @ITSIOIN laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | and him and him |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave, | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |

### DTPA Extractable Metals - Quality Control

### **Argon Laboratories**

|                           | ÷.     | Reporting | This  | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Límits | RPD | RPD<br>Limit | Notes  |
|---------------------------|--------|-----------|-------|----------------|------------------|----------|----------------|-----|--------------|--------|
| Analyte                   | Result | Limit     | Units | Level          | Result           | 70KEC    |                |     |              | 110103 |
| Batch HQK0061 - EPA 3050B |        |           |       |                |                  |          |                |     |              | ·      |
| Blank (HQK0061-BLK1)      |        |           |       | Prepared &     | k Analyzed:      | 11/07/07 |                |     |              |        |
| Antimony                  | ND     | 2.0       | mg/kg |                |                  |          |                |     |              |        |
| Arsenic                   | ND     | 1.0       | n     |                |                  |          |                |     |              |        |
| Barium                    | ND     | 5.0       | n     |                |                  |          |                |     |              |        |
| Beryllium                 | ND     | 1.0       | u     |                |                  |          |                |     |              |        |
| Cadmium                   | ND     | 1.0       | u     |                |                  |          |                |     |              |        |
| Chromium                  | ND     | 1.0       | u     |                |                  |          |                |     |              |        |
| Cobalt                    | ND     | 1.0       | ti    |                |                  |          |                |     |              |        |
| Copper                    | ND     | 2.0       | 11    |                |                  |          |                |     |              |        |
| Iron                      | ND     | 20        | н     |                |                  |          |                |     |              |        |
| Lead                      | ND     | 1.0       | n     |                |                  |          |                |     |              |        |
| Manganese                 | ND     | 20        |       |                |                  |          |                |     |              |        |
| Mercury                   | ND     | 0.10      | · n   |                |                  |          |                |     |              |        |
| Molybdenum                | ND     | 1,0       | н     |                |                  |          |                |     |              |        |
| Nickel                    | ND     | 1.0       | 11    |                |                  |          |                |     |              |        |
| Setenium                  | ND     | 1.0       | 71    |                |                  |          |                |     |              |        |
| Silver                    | ND     | 1.0       | u     |                |                  |          |                |     |              |        |
| Thallium                  | ND     | 1.0       | n     |                |                  |          |                |     |              |        |
| Vanadium                  | ND     | 1,0       | "     |                |                  |          |                |     |              |        |
| Zinc                      | ND     | 5.0       | U     |                |                  |          |                |     |              |        |
| LCS (HQK0061-BS1)         |        |           |       | Prepared &     | & Analyzed       |          | <u></u>        |     |              |        |
| Antimony                  | 11.8   |           | mg/kg | 10.0           |                  | 118      | 80-120         |     |              |        |
| Arsenic                   | 10,2   |           | ท     | 10.0           |                  | 102      | 80-120         |     |              |        |
| Barium                    | 107    |           | и     | 100            |                  | 107      | 80-120         |     |              |        |
| Beryllium                 | 9.70   |           | и     | 10,0           |                  | 97       | 80-120         |     |              |        |
| Cadmium                   | 9,00   |           | n     | 10.0           |                  | 90       | 80-120         |     |              |        |
| Chromium                  | 9,10   |           | н     | 10.0           |                  | 91       | 80-120         |     |              |        |
| Cobalt                    | 9.10   |           | п     | 10.0           |                  | 91       | 80-120         |     |              |        |
| Copper                    | 10.7   |           | 11    | 10.0           |                  | 107      | 80-120         |     |              |        |
| Iron                      | 99.0   |           | u     | 100            |                  | 99       | 80-120         |     |              |        |
| Lead                      | 10.2   |           | u     | 10,0           |                  | 102      | 80-120         |     |              |        |
| Manganese                 | 115    |           | "     | 100            |                  | 115      | 80-120         |     |              |        |
| Mercury                   | 0.40   |           | п     | 0.500          |                  | 80       | 80-120         |     |              |        |
| Molybdenum                | · 11.0 |           | u     | 10.0           |                  | 110      | 80-120         |     |              |        |
| Nickel                    | 9.50   |           | U     | 10.0           |                  | 95       | 80-120         |     |              |        |
| Selenium                  | 10. i  |           |       | 10.0           |                  | 101      | 80-120         |     |              |        |
| Silver                    | 9.50   |           |       | 10.0           |                  | 95       | 80-120         |     |              |        |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

A

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |                               | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond |           |              |           |          |        |     |         | Work Order No.: |  |  |
|-----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-----------|--------------|-----------|----------|--------|-----|---------|-----------------|--|--|
| Oakdaie, CA 95501                                               | Project Manager:              |                                                              |           |              |           |          |        |     | H710050 |                 |  |  |
| · · · ·                                                         | DT                            | PA Extractab                                                 | le Metal  | ls - Quality | Control   |          |        |     |         |                 |  |  |
| Argon Laboratories                                              |                               |                                                              |           |              |           |          |        |     |         |                 |  |  |
| · · · · · ·                                                     |                               | Reporting                                                    |           | Spike        | Source    |          | %REC   |     | RPD     |                 |  |  |
| Analyte                                                         | Result                        | Limit                                                        | Units     | Level        | Result    | %REC     | Limits | RPD | Limit   | Notes           |  |  |
| Batch HQK0061 - EPA 3050B                                       |                               |                                                              | · · · · · |              |           |          |        |     |         |                 |  |  |
| -CS (HQK0061-BS1)                                               | Prepared & Analyzed: 11/07/07 |                                                              |           |              |           |          |        |     |         |                 |  |  |
| Fhallium                                                        | 11.2                          |                                                              | mg/kg     | 10.0         |           | 112      | 80-120 |     |         |                 |  |  |
| anadium                                                         | 9.60                          |                                                              | 0         | 10.0         |           | 96       | 80-120 |     |         |                 |  |  |
| inc                                                             | 94.0                          |                                                              | n         | 100          |           | 94       | 80-120 |     |         |                 |  |  |
| CS Dup (HQK0061-BSD1)                                           | Prepared & Analyzed: 11/07/07 |                                                              |           |              |           |          |        |     |         |                 |  |  |
| Intimony                                                        | 11.2                          |                                                              | nıg/kg    | 10.0         |           | 112      | 80-120 | 5   | 20      |                 |  |  |
| Arsenic                                                         | 10.0                          |                                                              | 11        | 10.0         |           | 100      | 80-120 | 2   | 20      |                 |  |  |
| Barium                                                          | 106                           |                                                              | 11        | 100          |           | 106      | 80-120 | 0.9 | 20      |                 |  |  |
| Beryllium                                                       | 9.40                          | •                                                            | н         | 10.0         |           | 94       | 80-120 | 3   | 20      |                 |  |  |
| admium                                                          | 8.80                          |                                                              | н         | 10.0         |           | 88       | 80-120 | 2   | 20      |                 |  |  |
| Chromium                                                        | 9.00                          |                                                              | n         | 10.0         |           | 90       | 80-120 | 1   | 20      |                 |  |  |
| Cobalt                                                          | 8.50                          |                                                              | n         | 10.0         |           | 85       | 80-120 | 7   | 20      |                 |  |  |
| lopper                                                          | 10.6                          |                                                              | n         | 10.0         |           | 106      | 80-120 | 0.9 | 20      |                 |  |  |
| ron                                                             | 99.0                          |                                                              | и         | 100          |           | 99       | 80-120 | 0   | 20      |                 |  |  |
| ead .                                                           | 10.4                          |                                                              |           | 10.0         |           | 104      | 80-120 | 2   | 20      |                 |  |  |
| langanese                                                       | 109                           |                                                              | ŧ         | 100          |           | 109      | 80-120 | 5   | 20      |                 |  |  |
| fercury                                                         | 0.42                          |                                                              | ч         | 0,500        |           | 84       | 80-120 | 5   | 20      |                 |  |  |
| Aolybdenum                                                      | 10.4                          |                                                              | н         | 10.0         |           | 104      | 80-120 | 6   | 20      |                 |  |  |
| lickel                                                          | 9.40                          |                                                              | н         | 10.0         |           | 94       | 80-120 | 1   | 20      |                 |  |  |
| elenium                                                         | 10.0                          |                                                              | u         | 10.0         |           | 100      | 80-120 | 1   | 20      |                 |  |  |
| ilver                                                           | 9.60                          |                                                              | n         | 10.0         |           | 96       | 80-120 | 1   | 20      |                 |  |  |
| hallium                                                         | 9.50                          |                                                              | ۳.        | 10.0         |           | 95       | 80-120 | 16  | 20      |                 |  |  |
| anadium                                                         | 9,50                          |                                                              | н         | 10,0         |           | 95       | 80-120 | ı   | 20      |                 |  |  |
| line                                                            | 95.0                          |                                                              | น         | 100          |           | 95       | 80-120 | 1   | 20      |                 |  |  |
| fatrix Spike (HQK0061-MS1)                                      | Sou                           | rce: H710050-1                                               | 5         | Prepared &   | Analyzed: | 11/07/07 |        |     |         |                 |  |  |
| ntimony                                                         | 11,1                          |                                                              | mg/kg     | 10,0         | ND        | 111      | 70-130 |     |         |                 |  |  |
| arsenic                                                         | 9,30                          |                                                              | u         | 10.0         | 0.40      | 89       | 70-130 |     |         |                 |  |  |
| arium                                                           | 99.3                          |                                                              |           | 100          | 3.3       | 96       | 70-130 |     |         |                 |  |  |
| eryllium                                                        | 11.8                          |                                                              | н         | 10.0         | ND        | 118      | 70-130 |     |         |                 |  |  |
| admium                                                          | 12.5                          |                                                              | 17        | 10.0         | ND        | 125      | 70-130 |     |         |                 |  |  |
| hromium                                                         | 8,60                          |                                                              | н         | 10.0         | ND        | 86       | 70-130 |     |         |                 |  |  |
| obalt                                                           | 12.4                          |                                                              | н         | 10.0         | 0.30      | 121      | 70-130 |     |         | -               |  |  |
| opper                                                           | 10, <b>9</b>                  |                                                              | 51        | 10,0         | 0,70      | 102      | 70-130 |     |         |                 |  |  |
| on                                                              | 542                           |                                                              | 11        | 100          | 440       | 102      | 70-130 |     |         |                 |  |  |
| ead                                                             | 14.0                          |                                                              |           | 10.0         | 3.6       | 104      | 70-130 |     |         |                 |  |  |
| langanese                                                       | 101                           | · *                                                          |           | 100          | 4.9       | 96       | 70-130 |     |         | - 1             |  |  |

Approved By
# ConAgra Foods Inc. Project Number: 102-11 554 S. Yosemite Ave. Project Name: ConAgra Aerated Pond Oakdale, CA 95361 Project Manager: H710050

### DTPA Extractable Metals - Quality Control

### **Argon Laboratories**

| Analyte                         | Result | Reporting<br>Limit Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch HQK0061 - EPA 3050B       |        | . <u></u>                |                |                  |          |                |     |              |       |
| Matrix Spike (HQK0061-MS1)      | Sou    | rce: H710050-15          | Prepared &     | z Analyzed:      | 11/07/07 | ·              |     |              |       |
| Mercury                         | 0.60   | mg/kg                    | 0.500          | ND               | 120      | 70-130         |     |              |       |
| violybdenum                     | 11.9   | u .                      | 10.0           | ND               | 119      | 70-130         |     |              |       |
| Vickel                          | 19.3   | · "                      | 10.0           | 7,2              | 121      | 70-130         |     |              |       |
| Selenium                        | 11,1   | u.                       | 10.0           | ND               | 111      | 70-130         |     |              |       |
| Silver                          | 10.1   | ม                        | 10.0           | ND               | 101      | 70-130         |     |              |       |
| Thallium                        | 10.8   | R                        | . 10.0         | ND               | 108      | 70-130         |     |              |       |
| Vanadium                        | 11.0   | n                        | 10.0           | 2.4              | 86       | 70-130         |     |              |       |
| Zinc                            | 102    | н                        | 100            | 7.8              | 94       | 70-130         |     |              |       |
| Matrix Spike Dup (HQK0061-MSD1) | Sou    | rce: H710050-15          | Prepared &     | z Analyzed:      | 11/07/07 |                |     |              | =     |
| Antimony                        | 10.5   | mg/kg                    | 10.0           | NÐ               | 105      | 70-130         | 6   | 20           |       |
| Arsenic                         | 9,60   | 51                       | 10.0           | 0.40             | 92       | 70-130         | 3   | 20           |       |
| Barium                          | 99,3   | ม                        | 100            | 3.3              | 96       | 70-130         | 0   | 20           |       |
| Beryllium                       | 12.6   | н                        | 10.0           | ND               | 126      | 70-130         | 7   | 20           |       |
| Cadinium                        | 12.5   | 11                       | 10.0           | ND               | 125      | 70-130         | 0   | 20           |       |
| Chromium                        | 8.90   | U                        | 10.0           | ND               | 89       | 70-130         | 3   | 20           |       |
| Cobalt                          | 12.3   | ч                        | 10.0           | 0.30             | 120      | 70-130         | 0.8 | 20           |       |
| Copper                          | 10.9   | н                        | 10.0           | 0.70             | 102      | 70-130         | 0   | 20           |       |
| iron                            | 560    | ч                        | 100            | 440              | 120      | 70-130         | 3   | 20           |       |
| Lead                            | 13.8   | . u                      | 10.0           | 3,6              | 102      | 70-130         | 1   | 20           |       |
| Manganese                       | 106    | u                        | 100            | 4.9              | 101      | 70-130         | 5   | 20           |       |
| Mercury                         | 0.52   | н                        | 0,500          | ND               | 104      | 70-130         | 14  | 20           |       |
| Molybdenum                      | 12.1   | n                        | 10.0           | ND               | 121      | 70-130         | 2   | 20           |       |
| Vickel                          | 18.9   | н                        | 10.0           | 7.2              | 117      | 70-130         | 2   | 20           |       |
| Selenium                        | 12.0   | п                        | 10.0           | ND               | 120      | 70-130         | 8   | 20           |       |
| Silver                          | 10.8   | n                        | 10.0           | ND               | 108      | 70-130         | 7   | 20           |       |
| Thallium                        | 9.20   | 9                        | 10.0           | ND               | 92       | 70-130         | 16  | 20           |       |
| Vanadium                        | 11.0   | ม                        | 10.0           | 2.4              | 86       | 70-130         | 0   | 20           |       |
| Zinc                            | 102    |                          | 100            | 7.8              | 94       | 70-130         | 0   | 20           |       |

### Approved By

| ConAgra Foods Inc.       2905 Railroad Ave. Ceres, CA 95307 (209)581-9280       Fax (209)581-9282 |        |               |          |              |         |      |        |         |          | /\      |
|---------------------------------------------------------------------------------------------------|--------|---------------|----------|--------------|---------|------|--------|---------|----------|---------|
| 554 S. Yosemite Ave,                                                                              |        |               |          | nAgra Aerat  | ed Pond |      |        |         | Work Ord | er No.: |
| Oakdale, CA 95361                                                                                 | •      | ject Manager: |          |              |         |      |        | H710050 |          |         |
|                                                                                                   | Exti   | actable Pota  | ssium (F | () - Quality | Control |      |        |         |          |         |
| rgon Laboratories                                                                                 |        |               |          |              |         |      |        |         |          |         |
|                                                                                                   |        | Reporting     |          | Spike        | Source  |      | %REC   |         | RPD      |         |
|                                                                                                   | Result | Limit         | Units    | Level        | Result  | %REC | Limits | RPD     | Limit    | Notes   |

| Blank (HQK0056-BLK1)   |     | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | Prepared & Ana | ayzea: 11/0//07 |        | · · · · · · · · · · · · · · · · · · · |    |  |
|------------------------|-----|-----------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------|---------------------------------------|----|--|
| Potassium              | ND  | 20 mg/kg                                                                                                        |                |                 |        |                                       |    |  |
| LCS (HQK0056-BS1)      |     |                                                                                                                 | Prepared & Ana | lyzed: 11/07/07 |        |                                       |    |  |
| Potassium              | 2.5 | mg/kg                                                                                                           | 2.50           | 100             | 80-120 |                                       |    |  |
| LCS Dup (HQK0056-BSD1) |     | • · · · ·                                                                                                       | Prepared & Ana | lyzed: 11/07/07 |        |                                       |    |  |
| Potassium              | 2.5 | mg/kg                                                                                                           | 2,50           | 100             | 80-120 | 0                                     | 20 |  |

'n.,

ad & Analyzadi 11/07/07

Approved By

GTOTZODEC DT TZA

## argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| argon laboratories  | 2905 Railroad Ave. Céres, CA 95307 (209)581-9280 Fax (209)581-9282 | - Au A-          |
|---------------------|--------------------------------------------------------------------|------------------|
| ConAgra Foods Inc.  | Project Number: 102-11                                             | xillin interest  |
| 554 S. Yosemite Ave | Project Name: ConAgra Aerated Pond                                 | Work Order No .: |
| Oakdale, CA 95361   | Project Manager:                                                   | H710050          |

Metals - Quality Control

### **Argon Laboratories**

|                           |        | Reporting |          | Spike       | Source     |             | %REC   |     | RPD   |       |
|---------------------------|--------|-----------|----------|-------------|------------|-------------|--------|-----|-------|-------|
| Analyte                   | Result | Limit.    | Units    | Level       | Result     | %REC        | Limits | RPD | Limit | Notes |
| Batch HQK0046 - EPA 3050B |        |           |          |             |            |             |        |     | •.    |       |
| Blank (HQK0046-BLK1)      |        |           |          | Prepared: 1 | 10/29/07 A | nalyzed: 10 | /31/07 |     |       |       |
| Antimony                  | ND     | 2.0       | mg/kg    |             |            |             |        |     |       |       |
| Arsenic                   | ND     | 1.0       | н        |             |            |             |        |     |       |       |
| Barium                    | ND     | 5.0       | и        |             |            |             |        |     |       |       |
| Beryllium                 | ND     | 1.0       | н        |             |            |             |        |     |       |       |
| Cadmium                   | ND     | 1.0       | ч .      |             |            |             |        |     |       |       |
| Chromium                  | ND     | 1.0       | 11       |             |            |             |        |     |       |       |
| Cobalt                    | ND     | 1.0       | u –      |             |            |             |        |     |       |       |
| Copper                    | ND     | 2.0       |          |             |            |             |        |     |       |       |
| Iron                      | ND     | 20        | U        |             |            |             |        |     |       |       |
| Lead                      | ND     | 1,0       | н        |             |            |             |        |     |       |       |
| Manganese                 | ND     | 20        | н        |             |            |             |        |     |       |       |
| Mercury                   | ND     | 0.1       | It       |             |            |             |        |     |       |       |
| Molybdenum                | ND     | 1.0       | . 11     |             |            |             |        |     |       |       |
| Nickel                    | ND     | 1.0       | и        |             |            |             |        |     |       |       |
| Selenium                  | ND     | 1.0       | и        |             |            |             |        |     |       |       |
| Silver                    | ND     | 1.0       | 11       |             |            |             |        |     |       |       |
| Thallium                  | ND     | 1.0       | น        |             |            |             |        |     |       |       |
| Vanadium                  | ND     | 1.0       | 9        |             |            |             |        |     |       |       |
| Zinc                      | ND     | 5.0       | 0        |             |            |             |        |     |       |       |
| LCS (HQK0046-BS1)         |        |           |          | Prepared: 1 | 0/29/07 A  | nalyzed: 10 | /31/07 |     |       |       |
| Antimony                  | 10.0   |           | mg/kg    | 10.0        |            | 100         | 80-120 |     |       |       |
| Arsenic                   | 10.2   |           | n        | 10.0        |            | 102         | 80-120 |     |       |       |
| Barium                    | 100    |           | 11       | 100         |            | 100         | 80-120 |     |       |       |
| Beryllium                 | 10,3   |           | н        | 10.0        |            | 103         | 80-120 |     |       |       |
| Cadmium                   | 10.1   |           | н        | 10.0        |            | 101         | 80-120 |     |       |       |
| Chromium                  | 10.0   |           | н        | 10.0        |            | 100         | 80-120 |     |       |       |
| Cobalt                    | 10,6   |           | n        | 10.0        |            | 106         | 80-120 |     |       |       |
| Copper                    | 10.4   |           | n        | 10.0        |            | 104         | 80-120 |     |       |       |
| Iron                      | 110    |           | ч        | 100         |            | 110         | 80-120 |     |       |       |
| Lead                      | 10,3   |           | ti.      | 10.0        |            | 103         | 80-120 |     |       |       |
| Manganese                 | 108    |           | н        | 100         |            | 108         | 80-120 |     |       |       |
| Mercury                   | 0.42   |           | н .      | 0,500       |            | 84          | 80-120 |     |       |       |
| Molybdenum                | 9,80   |           | <u>и</u> | 10.0        |            | 98          | 80-120 |     |       |       |
| Nickel                    | 10.4   |           | n        | 10.0        |            | 104         | 80-120 |     |       |       |
| Selenium                  | 10.3   |           | в        | 10,0        |            | 103         | 80-120 |     |       |       |
| Silver                    | 9.70   |           | "        | 10.0        |            | 97          | 80-120 |     |       |       |

Approved By

| ConAgra Foods Inc.         |                  |           |           | nber: 102      |              |                    |             |                |       | ~~/\_ <u>^</u> _ | الدهيي   |
|----------------------------|------------------|-----------|-----------|----------------|--------------|--------------------|-------------|----------------|-------|------------------|----------|
| 554 S. Yosemite Ave.       |                  | 1         | Project N | ame: Co        | nAgra Aerate | ed Pond            |             |                |       | Work Ord         | er No.:  |
| Oakdale, CA 95361          | Project Manager: |           |           |                |              |                    |             |                | H7100 | 50               |          |
|                            |                  |           | Metals    | -<br>- Ouslift | y Control    |                    |             |                |       |                  |          |
|                            |                  |           | 112000013 | Q              | , control    |                    |             |                |       |                  |          |
| Argon Laboratories         |                  |           |           |                |              |                    | <u> </u>    |                |       |                  |          |
|                            | Des              |           | porting   | T.Z            | Spike        | Source             | NDEC        | %REC<br>Limits | RPD   | RPD<br>Limit     | Notes    |
| Analyte                    | Res              | uit       | Limit     | Units          | Level        | Result             | %REC        | Linns          | КГD   | Linit            | Notes    |
| atch HQK0046 - EPA 3050B   |                  |           |           |                |              |                    |             | ·              |       |                  |          |
| CS (HQK0046-BS1)           |                  |           |           |                | Prepared: 1  | 1 <b>0/29/07</b> A |             |                |       |                  | <u> </u> |
| hallium                    |                  | ),0       |           | mg/kg          | 10.0         |                    | 100         | 80-120         |       |                  |          |
| anadium                    | 10               | ).0       |           | в              | 10.0         |                    | 100         | 80-120         |       |                  |          |
| inc                        | 1                | 00        |           | н              | 100          |                    | 100         | 80-120         |       |                  |          |
| CS Dup (HQK0046-BSD1)      |                  |           |           |                | Prepared: 1  | 10/29/07 A         | nalyzed: 10 | /31/07         |       |                  |          |
| ntimony                    | 10               | ),0       |           | mg/kg          | 10.0         |                    | 100         | 80-120         | 0     | 20               |          |
| rsenic                     | 16               | ),3       |           |                | 10,0         |                    | 103         | 80-120         | 1     | 20               |          |
| arium                      | 1                | 00        |           |                | 100          |                    | 100         | 80-120         | 0     | 20               |          |
| eryllium                   | 10               | ).4       |           | и              | 10.0         |                    | 104         | 80-120         | 1     | 20               |          |
| admium                     | 10               | 0.1       |           | и              | 10.0         |                    | 101         | 80-120         | 0     | 20               |          |
| hromium                    | 10               | ).0       |           | n              | 10.0         |                    | 100         | 80-120         | 0     | 20               |          |
| obalt                      | 10               | ).6       |           | n              | 10.0         |                    | 106         | 80-120         | 0     | 20               |          |
| opper                      | 10               | 0.2       |           | в              | 10.0         |                    | 102         | 80-120         | 2     | 20               |          |
| on                         | . 1              | 08        |           | н              | 100          |                    | 108         | 80-120         | 2     | 20               |          |
| ead                        | 10               | 0.4       |           | н              | 10.0         |                    | 104         | 80-120         | 1     | 20               |          |
| fanganese                  | 1                | 09        |           | 11             | 100          |                    | 109         | 80-120         | 0.9   | 20               |          |
| fercury                    | 0.               | 42        |           | h              | 0,500        |                    | 84          | 80-120         | 0     | 20               |          |
| folybdenum                 | 9.               | 90        |           | н              | 10.0         |                    | 99          | 80-120         | 1     | 20               |          |
| ickel                      | 10               | ).5       |           |                | 10.0         |                    | 105         | 80-120         | 1     | 20               |          |
| elenium                    | 10               | ).2       |           | n              | 10,0         |                    | 102         | 80-120         | 1     | 20               |          |
| ilver                      | 9                | 80        |           | и              | 10.0         |                    | . 98        | 80-120         | í     | 20               |          |
| hallium                    | 10               | 0.2       |           | н              | 10.0         |                    | 102         | 80-120         | 2     | 20               |          |
| anadium                    | . 9.             | 90        |           | н              | 10.0         |                    | 99          | 80-120         | 1     | 20               |          |
| nc                         | 1                | 00        |           | н              | 100          |                    | 100         | 80-120         | 0     | 20               |          |
| fatrix Spike (HQK0046-MS1) |                  | Source: H | (710050-1 | 15             | Prepared: 1  | 10/29/07 A         | nalyzed: 10 | /31/07         |       |                  |          |
| ntimony                    | 10               | 0.3       |           | mg/kg          | 10.0         | ND                 | 103         | 70-130         |       |                  |          |
| rsenic                     | 1:               | 2.8       |           | H .            | 10.0         | 2.8                | 100         | 70-130         |       |                  |          |
| arium                      | 1                | 95        |           | в              | 100          | 87                 | 108         | 70-130         |       |                  |          |
| eryllium                   | . 9.             | 30        |           | IT             | 10.0         | ND                 | 93          | 70-130         |       |                  |          |
| admium                     | 10               | ),5       |           | n              | 10.0         | 0.42               | 101         | 70-130         |       |                  |          |
| hromium                    | 3                | 7.5       |           | n              | 10.0         | 28                 | 95          | 70-130         |       |                  |          |
| obalt                      | 13               | 3.7       |           | IT.            | 10.0         | 4.2                | 95          | 70-130         |       |                  |          |
| opper                      | . 59             | 9.1       |           | 84             | 10.0         | 49                 | 101         | 70-130         |       |                  |          |
| ead                        | 19               | 9.7       |           | 17             | 10.0         | 9.2                | 105         | 70-130         |       |                  |          |
|                            |                  |           |           |                |              |                    | 98          | 70-130         |       |                  |          |

## @ BO Laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

| ConAgra Foods Inc.   | Project Number: 102-11             | and him would   |
|----------------------|------------------------------------|-----------------|
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                   | H710050         |
|                      | Metals - Quality Control           |                 |

### **Argon Laboratories**

| Analyte                         | Result                                | Reporting<br>Limit U | Jnits | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|---------------------------------------|----------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Batch HQK0046 - EPA 3050B       | · · · · · · · · · · · · · · · · · · · |                      |       |                |                  |             |                |     |              |       |
| Matrix Spike (HQK0046-MS1)      | Sou                                   | rce: H710050-15      |       | Prepared: 1    | 0/29/07 A        | nalyzed: 10 | /31/0 <b>7</b> |     |              |       |
| Molybdenum                      | 11.1                                  | m                    | ıg/kg | 10,0           | 1.0              | 101         | 70-130         |     |              |       |
| Nickel                          | 40,6                                  |                      | н     | 10.0           | 30               | 106         | 70-130         |     |              |       |
| Selenium                        | 10,1                                  |                      | u     | 10.0           | ND               | 101         | 70-130         |     |              |       |
| Silver                          | 10.4                                  |                      | н     | 10,0           | ND               | 104         | 70-130         |     |              |       |
| Thallium                        | 10.0                                  |                      | н     | 10.0           | ND               | 100         | 70-130         |     |              |       |
| Vanadium                        | 40.7                                  |                      | n     | 10,0           | 31               | 97          | 70-130         |     |              |       |
| Zinc                            | 196                                   |                      | Ð     | 100            | 92               | 104         | 70-130         |     |              |       |
| Matrix Spike Dup (HQK0046-MSD1) | Sou                                   | rce: H710050-15      |       | Prepared: 1    | 0/29/07 A        | nalyzed: 10 | /31/07         |     | _            |       |
| Antimony                        | 10.0                                  | m                    | g/kg  | 10.0           | ND               | 100         | 70-130         | 3   | 20           |       |
| Arsenic                         | 12.8                                  |                      | U     | 10.0           | 2.8              | 100         | 70-130         | 0   | 20           |       |
| Barium                          | 190                                   |                      | U .   | 100            | 87               | 103         | 70-130         | 3   | 20           |       |
| Beryllium                       | 9,10                                  |                      | н     | 10.0           | ND               | 91          | 70-130         | 2   | 20           |       |
| Cadmium                         | 10.1                                  | -                    | н     | 10.0           | 0.42             | 9 <b>7</b>  | 70-130         | 4   | 20           |       |
| Chromium                        | 37.2                                  |                      | n     | 10.0           | 28               | 92          | 70-130         | 0.8 | 20           |       |
| Cobalt                          | 13.5                                  |                      | n     | 10,0           | 4.2              | 93          | 70-130         | 1   | 20           |       |
| Copper                          | 58.9                                  |                      | n     | 10.0           | 49               | 99          | 70-130         | 0.3 | 20           |       |
| Iron                            | 0.00                                  |                      | н     | 100            | 13000            | NR          | 70-130         |     | 20           |       |
| Lead                            | 20.5                                  |                      | н     | 10.0           | 9.2              | 113         | 70-130         | 4   | 20           |       |
| Manganese                       | 284                                   |                      | н     | 100            | 190              | 94          | 70-130         | 1   | 20           |       |
| Mercury                         | 0.43                                  |                      | н     | 0.500          | ND               | 86          | 70-130         | 0   | 20           |       |
| Molybdenum                      | 10.8                                  |                      | 0     | 10.0           | 1.0              | 98          | 70-130         | 3   | 20           |       |
| Nickel                          | 40.1                                  |                      | U     | 10,0           | 30               | 101         | 70-130         | 1   | 20           |       |
| Selenium                        | 10.0                                  |                      | н     | 10.0           | ND               | 100         | 70-130         | 1   | 20           |       |
| Silver                          | 10.1                                  |                      | н     | 10.0           | ND               | 101         | 70-130         | 3   | 20           |       |
| Thallium                        | 9.80                                  |                      | н     | 10.0           | ND               | 98          | 70-130         | 2   | 20           |       |
| Vanadium                        | 40.4                                  |                      | н     | 10.0           | 31               | 94          | 70-130         | 0.7 | 20           |       |
| Zinc                            | 193                                   |                      | 0     | 100            | 9 <b>2</b>       | 101         | 70-130         | 2   | 20           |       |

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

ł

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |        | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |          |                |                  |          |                |          |              | ـــــــــــــــــــــــــــــــــــــ |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------------|----------|----------------|------------------|----------|----------------|----------|--------------|---------------------------------------|
|                                                                 |        | Metals                                                                           | - Qualit | y Control      |                  |          |                |          |              |                                       |
| Argon Laboratories                                              |        |                                                                                  |          |                |                  |          |                |          | · .          |                                       |
| Analyte                                                         | Result | Reporting<br>Limit                                                               | Units    | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD      | RPD<br>Limit | Notes                                 |
| Batch HQK0052 - EPA 3050B                                       |        |                                                                                  |          |                |                  |          |                | <u> </u> |              |                                       |
| Blank (HQK0052-BLK1)                                            | •      |                                                                                  |          | Prepared &     | z Analyzed:      | 11/07/07 |                |          |              |                                       |
| Potassium                                                       | ND     | 20                                                                               | mg/kg    |                |                  |          |                |          |              |                                       |
| Calcium                                                         | ND     | 50                                                                               | н        |                |                  |          |                |          |              |                                       |
| Magnesium                                                       | ND     | 20                                                                               | н        |                |                  |          |                |          |              |                                       |
| Sodium                                                          | ND     | 50                                                                               | п        |                |                  |          |                |          |              |                                       |
| LCS (HQK0052-BS1)                                               |        |                                                                                  |          | Prepared &     | z Analyzed:      | 11/07/07 |                |          |              |                                       |
| Calcium                                                         | 10     |                                                                                  | mg/kg    | 10.0           |                  | 100      | 80-120         |          |              |                                       |
| Magnesium                                                       | 4.8    |                                                                                  | н        | 5.00           |                  | 96       | 80-120         |          |              |                                       |
| Potassium                                                       | 5.0    |                                                                                  | п        | 5.00           | •                | 100      | 80-120         |          |              |                                       |
| Sodium                                                          | 10     |                                                                                  | п        | 10.0           |                  | 100      | 80-120         |          |              |                                       |
| LCS Dup (HQK0052-BSD1)                                          |        |                                                                                  |          | Prepared &     | z Analyzed:      | 11/07/07 |                |          |              |                                       |
| Potassium                                                       | 5.0    |                                                                                  | mg/kg    | 5,00           |                  | 100      | 80-120         | 0        | 20           |                                       |
| Sodium                                                          | 10     |                                                                                  | н        | 10.0           |                  | 100      | 80-120         | 0        | 20           |                                       |
| Magnesium                                                       | 4.8    |                                                                                  | п        | 5.00           |                  | 96       | 80-120         | 0        | 20           |                                       |
| Calcium                                                         | 10     |                                                                                  | n        | 10.0           |                  | 100      | 80-120         | 0        | 20           |                                       |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |    | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |           |             |         |  |      |  |      | Work Order No.:<br>H710050 |  |  |
|-----------------------------------------------------------------|----|----------------------------------------------------------------------------------|-----------|-------------|---------|--|------|--|------|----------------------------|--|--|
| Argon Laboratories                                              | рН | - EPA Meth                                                                       | hod 150.1 | - Quality ( | Control |  |      |  | · ·. | • • •                      |  |  |
|                                                                 |    | Reporting                                                                        |           | Spike       | Source  |  | %REC |  | RPD  |                            |  |  |

| LC3 (HQK0043-D31) |      | 11       | epared & Analyzed. 1 | 0/51/07 |        | <br> |
|-------------------|------|----------|----------------------|---------|--------|------|
| pH                | 7.01 | pH Units | 7.00                 | 100     | 99-101 |      |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |        | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |          |                |                  |          |                |     |              | ـــــــــــــــــــــــــــــــــــــ |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------------|----------|----------------|------------------|----------|----------------|-----|--------------|---------------------------------------|
| ····                                                            |        | Phosphor                                                                         | ous - Qu | ality Contr    | ol               |          |                |     |              |                                       |
| Argon Laboratories                                              |        |                                                                                  |          |                |                  |          |                |     |              |                                       |
| Analyte                                                         | Result | Reporting<br>Limit                                                               | Units    | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes                                 |
| Batch HQK0057 - General Prep                                    |        |                                                                                  |          |                |                  |          |                |     |              |                                       |
| Blank (HQK0057-BLK1)                                            |        |                                                                                  |          | Prepared &     | z Analyzed:      | 11/01/07 |                |     |              |                                       |
| hosphorous as P - Bray Method                                   | ND     | 1.0                                                                              | mg/kg    |                |                  |          |                |     |              |                                       |
| .CS (HQK0057-BS1)                                               |        |                                                                                  |          | Prepared &     | z Analyzed:      | 11/01/07 |                |     |              |                                       |
| otal Phosphorous as P                                           | 10.8   |                                                                                  | mg/kg    | 10.0           |                  | 108      | 80-120         |     |              |                                       |
| CS Dup (HQK0057-BSD1)                                           |        |                                                                                  |          | Prepared &     | z Analyzed:      | 11/01/07 |                |     |              |                                       |
| Fotal Phosphorous as P                                          | 10.9   |                                                                                  | mg/kg    | 10,0           |                  | 109      | 80-120         | 0.9 | 20           |                                       |

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

Page 61 of 67

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |          |         | Project   |          | 2-11<br>hAgra Aerate |            |              |        |     | ـــــــــــــــــــــــــــــــــــــ |       |
|-----------------------------------------------------------------|----------|---------|-----------|----------|----------------------|------------|--------------|--------|-----|---------------------------------------|-------|
| •····                                                           | Specific | Conduct | ance (EC) | - EPA N  | fethod 120           | .1 - Quali | ty Contro    | 1      |     |                                       |       |
| Argon Laboratories                                              |          |         |           |          |                      |            |              |        |     |                                       |       |
|                                                                 |          |         | Reporting |          | Spike                | Source     |              | %REC   |     | RPD                                   |       |
| Analyte                                                         | · ]      | Result  | Limit     | Units    | Level                | Result     | %REC         | Limits | RPD | Limit                                 | Notes |
| Batch HQK0044 - General Prep                                    |          |         | -         |          |                      |            |              |        |     |                                       |       |
| lank (HQK0044-BLK1)                                             |          |         |           |          | Prepared: 1          | 0/30/07 A  | nalyzed: 11  | /08/07 |     |                                       |       |
| pecific conductance                                             |          | ND      | 5.0       | umhos/cm | ·                    |            |              |        |     |                                       |       |
| .CS (HQK0044-BS1)                                               |          |         |           |          | Prepared: 1          | 0/30/07 A  | nalyzed: 11. | /08/07 |     |                                       |       |
| pecific conductance                                             |          | 94.0    |           | umhos/cm | 100                  |            | 94           | 80-120 |     |                                       |       |
| LCS Dup (HQK0044-BSD1)                                          |          |         |           |          | D1. 1                | 020/07 4   | nalyzed: 11. | 109107 |     |                                       |       |

umhos/cm

100

97

80-120

3

20

97.0

Specific conductance

Approved By

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 | 2905 Railroad A | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |       |                |                  |          |                |     | Work Order No.:<br>H710050 |       |  |
|-----------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|-------|----------------|------------------|----------|----------------|-----|----------------------------|-------|--|
| · · · · · · · · · · · · · · · · · · ·                           | Total Dissoly   | ed Solids -                                                                      | EPA M | ethod 160.1    | - Quality        | Control  |                |     |                            |       |  |
| Argon Laboratories                                              |                 |                                                                                  |       |                |                  |          |                | _   |                            |       |  |
| Analyte                                                         | Result          | Reporting<br>Limit                                                               | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit               | Notes |  |
| Batch HQK0045 - General Prep                                    |                 |                                                                                  |       |                |                  |          |                |     |                            |       |  |
| Blank (HQK0045-BLK1)                                            |                 |                                                                                  |       | Prepared &     | Analyzed:        | 10/31/07 |                |     |                            |       |  |
| Fotal Dissolved Solids                                          | ND              | 10                                                                               | mg/L  |                |                  |          |                |     |                            |       |  |
| LCS (HQK0045-BS1)                                               |                 |                                                                                  |       | Prepared &     | Analyzed:        | 10/31/07 |                |     |                            |       |  |
| Total Dissolved Solids                                          | 1000            |                                                                                  | mg/L  | 1000           |                  | 100      | 80-120         |     | =                          |       |  |
| LCS Dup (HQK0045-BSD1)                                          |                 |                                                                                  |       | Prepared &     | Analyzed:        | 10/31/07 |                |     |                            |       |  |
| Fotal Dissolved Solids                                          | 1000            |                                                                                  | mg/L  | 1000           |                  | 100      | 80-120         | 0   | 20                         |       |  |
| Matrix Spike (HQK0045-MS1)                                      | Sou             | rce: H710050                                                                     | -06   | Prepared &     | Analyzed:        | 10/31/07 |                |     |                            |       |  |
| Fotal Dissolved Solids                                          | 3500            |                                                                                  | mg/L  | 1000           | 2600             | 90       | 70-130         |     |                            |       |  |
| Matrix Spike Dup (HQK0045-MSD1)                                 | Sou             | rce: H710050                                                                     | -06   | Prepared &     | Analyzed:        | 10/31/07 |                |     |                            |       |  |
| Total Dissolved Solids                                          | 3470            |                                                                                  | mg/L  | 1000           | 2600             | 87       | 70-130         | 0.9 | 20                         |       |  |

| ConAgra Foods Inc.<br>554 S. Yosemite Ave.<br>Oakdale, CA 95361 |        | Project Number: 102-11<br>Project Name: ConAgra Aerated Pond<br>Project Manager: |            |             |            |             |        |     | Work Ord<br>H7100 |       |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------------|------------|-------------|------------|-------------|--------|-----|-------------------|-------|
| <u>,                                     </u>                   |        | Total Fixed                                                                      | Solids - ( | Quality Con | ıtrol      |             |        |     |                   |       |
| Argon Laboratories                                              |        |                                                                                  |            |             |            |             |        |     |                   |       |
| ······································                          |        | Reporting                                                                        |            | Spike       | Source     |             | %REC   |     | RPD               |       |
| Analyte                                                         | Result | Limit                                                                            | Units      | Level       | Result     | %REC        | Limits | RPD | Limit             | Notes |
| Batch HQK0059 - General Prep                                    |        |                                                                                  |            |             |            | _           |        |     |                   |       |
| Blank (HQK0059-BLK1)                                            |        |                                                                                  |            | Prepared: 1 | 10/29/07 A | nalyzed: 11 | /03/07 |     |                   |       |
| Fotal Fixed Solids                                              | ND     | 50                                                                               | mg/L       |             |            |             |        |     |                   |       |
| Duplicate (HQK0059-DUP1)                                        | Sou    | rce: H710050-                                                                    | 01         | Prepared: 1 | 10/29/07 A | nalyzed: 11 | /03/07 |     |                   |       |
| fotal Fixed Solids                                              | 310000 | 50                                                                               | mg/L       |             | 310000     |             |        | 0   | 20                |       |

| argon laboratories              | 2905 Railroad Av | ve. Ceres, CA 95307                | (209)581-92 | 80 Fax (2   | 09)581-928 | 32     |     | . <u>1</u> | Λ_      |
|---------------------------------|------------------|------------------------------------|-------------|-------------|------------|--------|-----|------------|---------|
| ConAgra Foods Inc.              |                  | Project Number: 102-11             |             |             |            |        |     | and the    |         |
| 554 S. Yosemite Ave.            |                  | Project Name: ConAgra Aerated Pond |             |             |            |        |     | Work Ord   | er No.: |
| Oakdale, CA 95361               |                  | Project Manager:                   |             |             |            |        |     | H7100      | 50      |
|                                 | Total Kjeld      | ahl Nitrogen by EP                 | A 351.2 - Q | uality Co   | atrol      |        | -   |            |         |
| Argon Laboratories              |                  |                                    |             |             |            |        |     | ÷.         |         |
|                                 |                  | Reporting                          | Spike       | Source      |            | %REC   |     | RPD        |         |
| Analyte                         | Result           | Limit Units                        | Level       | Result      | %REC       | Limits | RPD | Limit      | Notes   |
| Batch HQK0054 - General Prep    |                  |                                    |             |             |            |        |     |            |         |
| Blank (HQK0054-BLK1)            |                  |                                    | Prepared &  | z Analyzed: | 10/30/07   |        |     |            |         |
| Total Kjeldahl Nitrogen         | ND               | 5.0 mg/kg                          |             |             |            |        |     |            |         |
| LCS (HQK0054-BS1)               |                  |                                    | Prepared &  | Analyzed:   | 10/30/07   |        |     |            |         |
| Total Kjeldahl Nitrogen         | 10,1             | m <b>g/kg</b>                      | 10.0        |             | 101        | 80-120 |     |            |         |
| LCS Dup (HQK0054-BSD1)          |                  |                                    | Prepared &  | Analyzed:   | 10/30/07   |        |     |            |         |
| Total Kjeldahl Nitrogen         | 10.1             | mg/kg                              | 10.0        |             | 101        | 80-120 | 0   | 20         |         |
| Matrix Spike (HQK0054-MS1)      | Sourc            | e: H710050-11                      | Prepared &  | Analyzed:   | 10/30/07   |        |     |            |         |
| Total Kjeldahl Nitrogen         | 1310             | mg/kg                              | 10.0        | 1300        | 100        | 70-130 |     |            |         |
| Matrix Spike Dup (HQK0054-MSD1) | Sourc            | e: H710050-11                      | Prepared &  | Analyzed:   | 10/30/07   |        |     |            |         |
| Total Kjeldahl Nitrogen         | 1310             | mg/kg                              | 10.0        | 1300        | 100        | 70-130 | 0   | 20         |         |

| argon laboratories   | 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282 | A A             |
|----------------------|--------------------------------------------------------------------|-----------------|
| ConAgra Foods Inc.   | Project Number: 102-11                                             | sultin          |
| 554 S. Yosemite Ave. | Project Name: ConAgra Aerated Pond                                 | Work Order No.: |
| Oakdale, CA 95361    | Project Manager:                                                   | H710050         |
|                      | Total Organic Carbon - Quality Control                             |                 |

### **Argon Laboratories**

| Analyte                      | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit                             | Notes |
|------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|------------------------------------------|-------|
| Batch HQK0060 - General Prep |        |                    |       |                |                  |             |                |     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |       |
| Blank (HQK0060-BLK1)         |        |                    |       | Prepared: 1    | 0/01/07 A        | nalyzed: 11 | /01/07         |     |                                          |       |
| Fotal Organic Carbon         | ND     | 200                | mg/kg |                |                  |             |                |     |                                          |       |
| LCS (HQK0060-BS1)            |        |                    |       | Prepared: 1    | 0/01/07 A        | nalyzed: 11 | /01/07         |     |                                          |       |
| Total Organic Carbon         | 60.0   |                    | mg/kg | 60.0           |                  | 100         | 70-130         |     |                                          |       |
| LCS Dup (HQK0060-BSD1)       |        |                    |       | Prepared: 1    | 0/01/07 A        | nalyzed: 11 | /01/07         |     |                                          |       |
| Total Organic Carbon         | 60.0   |                    | mg/kg | 60,0           |                  | 100         | 70-130         | 0   | 20                                       |       |

| Notes and Definition         DET       Analyte DETECTED         ND       Analyte NOT DETECTED at or above the reporting limit         NR       Not Reported         dry       Sample results reported on a dry weight basis         RPD       Relative Percent Difference | 18 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ND       Analyte NOT DETECTED at or above the reporting limit         NR       Not Reported         dry       Sample results reported on a dry weight basis                                                                                                               |    |
| NR Not Reported<br>dry Sample results reported on a dry weight basis                                                                                                                                                                                                      |    |
| dry Sample results reported on a dry weight basis                                                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                           |    |
| DD Dalative Descent Difference                                                                                                                                                                                                                                            |    |
| ALD Addition Difference                                                                                                                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                           |    |

### APPENDIX B

LABORATORY ANALYTICAL RESULTS OF MAY 2005 APPLICATION SOILS

Date Sampled: 05/06/2005 Date Received: 05/06/2005 Date Reported: 05/11/2005 Submitted by: John Brichetto Sampled by: John Brichetto EPA SW846-7471A EPA SW846-6010 EPA SW846-6010 SW846-6010 EPA SW846-6010 EPA SW846-6010 PA SW846-6010 EPA SW846-6010 =PA SW846-6010 PA SW846-6010 Method Code A & L WESTERN AGRICULTURAL LABORATORIES, INC. 1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080 Ч 503 METALS ANALYSIS REPORT Sample ID: Crane Rd. Top Level Found BDL Pending Account No: 9999 **mg/kg** BDL 7.8 3.0 BDL 28.9 5 0 BDL 5 Aolybdenum Chromium Cadmium Selenium Analyte Alercury Arsenic Copper Vickel ead. zino Zino **Detection Limit** OAKDALE, CA 95361 JOHN BRICHETTO Attention: Name P 0 BOX 11600 mg/kg Report No: 05-126-029 က ဂ o ດິດ Lab Number: 50433 Preliminary Report Send to:

BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE.

A & L Western Agricultural Laboratories

**Robert Butterfield** 7

Laboratory Director

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any referencie be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western-Agri. Labs, Inc., 2001

Page 1 of 4

d

S

8856 748 805

O ottanbinŒ

555:40 20 81 85M

A & L WESTERN AGRICULTURAL LABORATORIES

1311 Woodiand Ave. • Ste. #1 • Modesto, CA 95351 • (209) 529-4080 • FAX (209) 529-4736

Client No: 99999-D

Samples Submitted BY: CUSTOMER JOHN BRICHETTO PO BOX 11800 OAKDALE, CA 95381-

**ORGANIC AMENDMENT REPORT** 

AGL WESTERN LABORATORIES, INC.

| [                                    | L                                                                                           |                                           | ł   |
|--------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|-----|
| REPORT OF ANALYSIS-PARTS PER MILLION | 1                                                                                           | ÷                                         |     |
| E                                    | 00                                                                                          | C<br>S                                    |     |
| Ī                                    |                                                                                             | 954<br>(M                                 | 1 · |
| 1                                    |                                                                                             | EM .                                      | Ľ   |
| S I                                  | N2                                                                                          |                                           |     |
| H                                    |                                                                                             | ্যা                                       |     |
| a                                    | ы<br>Ш                                                                                      |                                           |     |
| S S                                  | Ν<br>Ω                                                                                      |                                           |     |
| Ľ                                    | Mn Cu<br>MANGA- COPPER<br>NESF                                                              | <del> </del>                              | 1   |
| N N                                  | Egg                                                                                         | හ<br>ලැ<br>මැ                             |     |
| <b>A</b>                             | NA NA                                                                                       |                                           | - I |
| Ö                                    |                                                                                             | φ                                         |     |
|                                      | 2 × ×                                                                                       | 0<br>5<br>1<br>5                          |     |
|                                      | ALL A                                                                                       | 1                                         | ľ   |
| 2                                    |                                                                                             | <u></u>                                   |     |
| Ì.                                   | a<br>No<br>No                                                                               | لانا<br>بينيا<br>ماري                     | •   |
|                                      | <u>–</u>                                                                                    | 67)<br>•**                                |     |
| <u> </u>                             | CALCIUM SODIUM                                                                              | 0.160 0.133 0.010 0.230 0.150 0.010 15120 |     |
|                                      | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | 01                                        | •   |
|                                      | 8                                                                                           | 0                                         |     |
|                                      | Σ                                                                                           | 0                                         |     |
|                                      | ßğ                                                                                          | 47<br>***                                 |     |
|                                      | S                                                                                           | o.                                        |     |
|                                      | Mg<br>MAG-<br>NESIUM                                                                        | 0                                         |     |
|                                      | aga<br>BAg⊡                                                                                 | ei<br>ei                                  |     |
|                                      | <sup>−</sup> ¤≝                                                                             | o i                                       |     |
|                                      | œ                                                                                           | 0                                         |     |
|                                      | លដ្ឋ                                                                                        | ò                                         |     |
| N.                                   | ୶                                                                                           | 0                                         |     |
| SCI                                  | 5                                                                                           | ന്<br>ത                                   |     |
| Ы                                    | X S                                                                                         | ·                                         |     |
| ANALYSIS-PERCENT                     | K K20 SULFUR<br>SIUM                                                                        | <u> </u>                                  |     |
| γs                                   | ÿΣ                                                                                          | 0.9                                       |     |
| AL                                   | Sig K                                                                                       | 4<br>4                                    |     |
|                                      |                                                                                             | <u> </u>                                  | •   |
| ö                                    | Syl=                                                                                        | 0                                         |     |
| RT                                   | P205<br>PHOS-<br>PHATE                                                                      | ċ                                         |     |
| REPORT OF                            |                                                                                             | 0.03 0.07                                 | ÷   |
| 뛒                                    | °S.<br>SS                                                                                   | 03                                        |     |
|                                      | ₽ĞĞ                                                                                         | · ·                                       |     |
| •                                    | PHOS-<br>PHORUS                                                                             |                                           |     |
|                                      | NITRO-<br>GEN                                                                               | 0-01                                      |     |
|                                      | z H H                                                                                       | é                                         |     |
|                                      |                                                                                             |                                           |     |
|                                      |                                                                                             |                                           |     |
|                                      | щ                                                                                           | e l                                       |     |
| ·                                    | SAMPLE<br>NUMBER                                                                            | ŭ,                                        |     |
|                                      | 85                                                                                          | CRANE RD<br>TOP                           |     |
|                                      |                                                                                             | CRAI<br>TOP                               |     |
| <u> </u>                             |                                                                                             | Q                                         |     |

walnut

|                                           | POUNDS          | POUNDS OF NUTRIENTS/TON | <b>SIENTS/TC</b>       | NC                  |               |               |                |                                        |                  |    | : | <br> <br> <br> <br>            |                 |      |            | $\bigcap$ |
|-------------------------------------------|-----------------|-------------------------|------------------------|---------------------|---------------|---------------|----------------|----------------------------------------|------------------|----|---|--------------------------------|-----------------|------|------------|-----------|
| SAMPLE<br>NUMBER                          | NITRO-<br>GENO- | PHOS-<br>PHORUS         | P2O5<br>PHOS-<br>PHATE | K<br>POTAS-<br>SIUM | K20<br>POTASH | POTASH SULFUR | MAG-<br>NESIUM | Mg Ca<br>MAG- CALCIUM SODIUM<br>NESIUM | sodium<br>Sodium | ВĞ |   | Mn Cu<br>MANGA- COPPER<br>NFSF | CU<br>COPER     | ZINC |            |           |
| CRANE RD                                  | 9<br>9          | 0<br>0<br>0             | *<br>*                 | 3                   | 6<br>* C      | 0             | 929<br>• • • • | °. 0                                   | 3.0 0.2 30.2     | ç. | 1 | с<br>С                         | 3.8 0.3 0.1 0.1 |      | 420<br>420 |           |
| Reported on an as-received basis Moisture | n as-receiv     | red basis               | Moisture =             |                     | 8             | 0H = 10       | - Cl           |                                        |                  |    |   |                                |                 |      |            | ] [       |

Organic Matter = 0.85 % Nitrate Nitrogen Ammonia Nitrogen C:N Ratio = 35:1 Soluble Saits = Chioride Organic Nitrogen Volatile Solids % To convert to pounds of nutrients/ton 4.10 as received, multiply pounds of Moisture = mutrients/ton as reported by (100 - molsture %)/100. Reported on a dry basis Remarks:

not be reproduced in whole or in part, nor may any reference be made to the work, the results or the company in any advertising, news release, or other pub-Our reports and latters are for the exclusive and confidential use of our clients lic announcements without obtaining our prior written authorization

This report applies only to the sample(s) tested. Samplas are retained a maximum of thirty days after testing.

= <0.0003 % = 0.0004 %

= 0.014 ■ 0.014 ■ 0.85

= 0.2 d3/m

្ពា ដា ROBER ል

603

05/12/2005

DATE \_

LAB NO.\_

50433

C Otterichetto

A₽W eve : +0 **S**0 8 T

e ، م

REPORT NUMBER

05-128-029

SEND TO:

3588

747

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any referencie be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

Page 2 of 4

Date Sampled: 05/06/2005 Date Received: 05/06/2005 Date Reported: 05/11/2005 Submitted by: John Brichetto Sampled by: John Brichetto EPA SW846-7471A EPA SW846-6010 **Method Code** 1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080 Sample ID: Brady Rd. North End **503 METALS ANALYSIS REPORT** BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE. Level Found Pending Account No: 9999 mg/kg BDL 6.5 37.3 20.8 42 38.5 BDL 67.3 BDL Jolybdenum Chromium admium Selenium Analyte Copper flercury Arsenic Vickel ead Zinc Detection Limit P O BOX 11600 OAKDALE, CA 95361 JOHN BRICHETTO Attention: Name mg/kg 0.5 Report No: 05-126-029 ហុ Q ŝ Lab Number: 50435 Preliminary Report Send to:

88SE

748 60S Э otterloina

ReM ₽S€ : 10 90 <del>8</del> 1

A & L Western Agricultural Laboratories

Laboratory Director

**Robert Butterfield** 

E • q

A & L WESTERN AGRICULTURAL LABORATORIES, INC.

A & L WESTERN AGRICULTURAL LABORATORIES

1311 Woodland Ave. • Ste. #1 • Modesto, CA 95351 • (209) 529-4080 • FAX (209) 529-4736

Client No. 28989-D

| SAMPLES<br>SUBMITTED | BY:      |                |              |                    |
|----------------------|----------|----------------|--------------|--------------------|
|                      | CUSTOMER | JOHN BRICHETTO | PO BOX 11600 | OAKDALE, CA 95361- |

**ORGANIC AMENDMENT REPORT** 

Ņ

50435

203



A&L WESTERN LABORATORIES, INC.

# 0.00 REPORT OF ANALYSIS-PARTS PER MILLION άŬ #\*\*\* |~u r NC NC ्। (-) COPPER ഗ |~ ന MANGA-NESE 100 Y ALUMI-NUM 0.21 0.380 0.458 0.010 0.720 0.480 0.030 18340 Bon Nor Calcium sodium Mg MAG-NESIUM POTASH SULFUR REPORT OF ANALYSIS-PERCENT POTAS-PHOS-PHOS-PHATE 05/12/2005 0.08 PHOS-PHORUS 0.07 NITRO-GEN BRADY RD NORTH END SAMPLE NUMBER LAB NO.

walness

|                         | ជា    |                                         |          | e<br>e         |  |
|-------------------------|-------|-----------------------------------------|----------|----------------|--|
|                         | 2n    |                                         |          |                |  |
|                         | S     | MANGA- COPPER                           |          | 0.8 < 0.1      |  |
|                         | Mn    | MANGA-<br>NESE                          |          | 0.8            |  |
|                         | AI    | ALUMI-<br>NUM                           |          | ຜ<br>ທີ່<br>** |  |
|                         | e e   | IRON                                    |          | 0.6 38.7       |  |
|                         | Na    | NUIGOS                                  | ſ        |                |  |
|                         | 53    | POTAS POTASH SULFUR MAG. CALCIUM SODIUM |          | Ю<br>Ф         |  |
|                         | 1 201 | MAG-                                    |          | জা<br>হা<br>•  |  |
|                         |       | รปะคืมห                                 |          | 0.2            |  |
|                         |       | POTASH                                  | Ţ        | ୍ୟ<br>ଜ<br>ଜ   |  |
| NC                      |       | POTAS-                                  | NUM      | (0)<br> ~      |  |
| VIENTS/TC               |       | PHO59                                   | _        | ा<br>द<br>एो   |  |
| POUNDS OF NUTRIENTS/TON |       | PHOS-                                   | PHORUS 1 | 1.8            |  |
| POUNDS                  |       | NITRO-                                  | GEN      | v.j            |  |
|                         |       | SAMPLE                                  |          | BRADY RD       |  |

| pH = 6.5<br>7.8 Detto = 201      | Soluble Salts = 0.3 dS/m<br>Organic Matter = 3.55 % | Ammonia Nitrogen = <0.0003 %<br>Nitrate Nitrogen = 0.0004 %<br>Chiorida = 0.77 %<br>Organic Nitrogen = 0.071 %<br>Volatile Solids = 3.55 %      |
|----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| %                                | %<br>5                                              | ton .                                                                                                                                           |
|                                  | 0<br>0                                              | 14<br>14<br>10                                                                                                                                  |
| Moisture =                       | Moisture = g, 59 %                                  | of nutrie<br>pounds o<br>ted by<br>J.                                                                                                           |
| Reported on an as-received basis | Reported on a dry basis                             | Remarks:<br>To convert to pounds of nutrients/ton<br>as received, multiply pounds of<br>nutrients/ton as reported by<br>(100 - moisture %)/100. |

work, the results of the company in any advertising, news release, or other pub-its amouncements without obtaining our prior written authorization.

Our reports and letters are for the excitive and confidential use of our citents, not be reproduced in whole or in part, nor may any reference be made to the

This report applies only to the sample(s) tested. Samples are relained a maximum of thirty days after losting.

ROBER

ል

8855 748

SEND TO:

05-126-029

REPORT NUMBER

8 • q

J otterioing

896:40 8 T ReM

sò

REPORT NUMBER

۰٥

05-126-029

SEND 101

3588

7.4B

60Z

1311 Woodland Ave. • Ste. #1 • Modesto, CA 95351 • (209) 529-4080 • FAX (209) 529-4736 A & L WESTERN AGRICULTURAL LABORATORIES

Client No: 99999-D

**ORGANIC AMENDMENT REPORT** CUSTOMER CAKDALE, CA 95381eŋ. JOHN BRICHETTO 05/12/2005 DATE \_\_\_\_\_ PAGE\_ 50438 LAB NO.

|--|--|

A&L WESTERN LABORATORIES, INC.

SAMPLES SUBMITTED BY:

# REPORT OF ANALYSIS-PARTS PER MILLION នុង្គ c) COPPER Mn Manga-Nese (), (1) 2342 0.02 0.070 0.084 0.010 0.210 0.130 0.010 12370 RON Na SODIUM CALCIUM Mg MAG-NESIUM POTASH SULFUR REPORT OF ANALYSIS-PERCENT POTAS-SIUM PHATE PHATE 0.01 PHOS-PHORUS 0 0 0 NITRO-GEN-SAMPLE ۲'n ۵

Э

otta

Bгi

٥

| ſ                       |                     |            |               |   |
|-------------------------|---------------------|------------|---------------|---|
|                         | ລ                   |            | "<br>0        | ļ |
|                         | ZINC                |            | с <b>С.</b> 4 |   |
|                         | COPPER              |            | · • •         |   |
|                         | Manga-              | NESE       | ei .<br>0     |   |
|                         | ALUMI-              | MON        | ₩<br>\$       |   |
|                         | RON                 |            | 2년, ©         |   |
|                         | Na<br>Sodium        |            | 0<br>6        |   |
|                         | Calcium Sodium      |            | ର<br>ର<br>ର   |   |
|                         | Mg<br>MAG-<br>FSUIM |            | রে<br>ম্ব     |   |
|                         | K20 SULFUR          |            | 0.2<br>0      |   |
|                         |                     |            | /⊷<br>∎<br>∎  |   |
| NO                      | R<br>POTAS-<br>SIUM |            | <t<br></t<br> |   |
| <b>IENTS/T</b>          | P205<br>PHOS        |            | ່ວ            |   |
| POUNDS OF NUTRIENTS/TON | PHOS-<br>PHORUS     | (<br>-     | N .<br>2      |   |
| POUNDS                  | NTRO<br>GEN<br>GEN  | - 7<br>- 1 | -             |   |
|                         | SAMPLE<br>NUMBER    | 00 222 00  |               | Į |

× ReM

|                                               | Our reports and latters are for the exclusive and confidential use of our clients,<br>not be reproduced in whele or in part, nor may any reference be made to the<br>work, the results or the compariavin any anywhich on human and the | fic announcements without obtaining our prior written authorization. | This report applies only to the sample(s) tested. Samples are retained a maximum of birthy days after testing. |                                                        | By ROBENT SUFTER FELD |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|
| 0.4<br>1.5.6                                  | C:N Ratio = 52:1<br>Soluble Salts = 0.5 d8/m                                                                                                                                                                                            | Organic Matter = 4.33 %                                              | C C A<br>5 0                                                                                                   | Organic Nitrogen = 0.048 %<br>Volatile Solids = 4.33 % |                       |
| Reported on an as-received basis Moisture = % | 区 Reported on a dry basis Moisture = 12、49 %                                                                                                                                                                                            | Remarks:                                                             | To convert to pounds of nutrients/ton<br>as received, multiply pounds of                                       | nurfents/ton as reported by<br>(100 - moisture X)/100. |                       |

Almarch

21 52.0

ώ

A & L WESTERN AGRICULTURAL LABORATORIES, INC. 1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080



Account No: 9999

Report No: 05-126-029 Preliminary Report JOHN BRICHETTO P O BOX 11600 OAKDALE, CA 95361 Send to:

Attention: Name

Lab Number: 50438

Sample ID: 26 Mile Rd. Block 5 **503 METALS ANALYSIS REPORT** 

Date Reported: 05/11/2005 Date Sampled: 05/06/2005 Date Received: 05/06/2005

Submitted by: John Brichetto Sampled by: John Brichetto

|       |                 | • • • •  |             |                 |
|-------|-----------------|----------|-------------|-----------------|
| Dete  | Detection Limit | Analyte  | Level Found | Method Code     |
| mg/kg | Đ               |          | ma/ka       |                 |
| 0.5   |                 | Arsenic  | BDL         | EPA SW846-6010  |
| 0.1   |                 | Cadmium  | 5.2         | EPA SWRA6-6010  |
| 0.5   |                 | Chromium | 13.3        | EPA SWARE-ED10  |
| 0.1   |                 | Copper   | 0.7         |                 |
| 1.2   |                 | Lead     | BDL         | EPA SW/846_6010 |
| 0.05  | :               | Mercury  | Pending     | EPA SW846-7471A |
| •     |                 |          | 0           |                 |

EPA SW846-6010 EPA SW846-6010

EPA SW846-6010 EPA SW846-6010

BDL 55.1

BDL 17.1

Aolybdenum

0.05 q 5 ŝ 2

Selenium

Zinc

Nickel

BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE.

A & L Western Agricultural Laboratories

MI-7 **Robert Butterfield** 

Laboratory Director

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our phor written authorization. In A L Western Agri. Labs, Inc., 2001

Page 3 of 4

A & L WESTERN AGRICULTURAL LABORATORIES, INC. 1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080

• ન

٦

۱



|     | ·<br>·                                      | Submitted by: John Brichetto<br>Sampled by: John Brichetto    | Date Sampled: 05/06/2005<br>Date Received: 05/06/2005 | Date Reported: 05/11/2005        |                            | Method Code     |       | EPA SW846-6010 | EPA SW846-7471A | EPA SW846-6010 | EPA SW846-6010 | EPA SW846-6010 | EPA SW846-6010 |
|-----|---------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|----------------------------------|----------------------------|-----------------|-------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|
|     | Account No: 9999                            |                                                               |                                                       | Sample ID: 26 Mile Rd. Block 6-7 | 503 METALS ANALYSIS REPORT | Level Found     | mg/kg | BDL            | 4.1            | 19,2           | 5.7            | 3.7            | Pending         | BDL            | 5.4            | BDL            | 70.0           |
| ·   |                                             |                                                               | -                                                     |                                  |                            | Analyte         |       | Arsenic        | Cadmium        | Chromium       | Copper         | Lead           | Mercury         | Molybdenum     | Nickel         | Selenium       | Zinc           |
| : . | Report No: 05-126-029<br>Preliminary Report | Send to: JOHN BRICHETTO<br>P O BOX 11600<br>OAKDALE, CA 95361 | Attention: Name                                       | Lab Number: 50439                |                            | Detection Limit | mg/kg | 0.5            | 0.1            | 0.5            | 0.1            | 1.2            | 0.05            | 1.0            | 0.1            | 5.5            | 0.1            |
|     |                                             |                                                               |                                                       |                                  |                            |                 |       |                |                |                |                |                |                 |                |                |                |                |

BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE.

A & L Western Agricultural Laboratories

**Robert Butterfield** 

Laboratory Director

Page 4 of 4 Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public ennouncements without obtaining our prior written authorization. It is a L Western Agri. Labs. Inc., 2001

ο en 7

00

пгіспетто

A & L WESTERN AGRICULTURAL LABORATORIES

1311 Woodland Ave. • Ste. #1 • Modesto, CA 95351 • (209) 529-4080 • FAX (209) 529-4736

Client No: 99999-D

SAMPLES SUBMITTED BY: CUSTOMER



AGL WESTERN LABORATORIES, INC.

CAKDALE, CA 95361-JOHN BRICHETTO PO BOX 11600

4 05/12/2005 DATE PAGE 50439 LAB NO.

60S

748

# **ORGANIC AMENDMENT REPORT**

| <b>IIILION</b>                       | ជ                                                   | 0<br>9                                   |
|--------------------------------------|-----------------------------------------------------|------------------------------------------|
| TS PER N                             | ZNC                                                 | ())<br>***                               |
| SIS-PAR                              | COPPER                                              | rst .                                    |
| REPORT OF ANALYSIS-PARTS PER MILLION | Mn Cu<br>MANGA- COPPER<br>NESE                      |                                          |
| EPORT O                              |                                                     | 0)<br>12)<br>13)<br>14)<br>17)<br>17)    |
| œ                                    | IRON<br>IRON                                        | 12150                                    |
|                                      | SODIUM                                              | 0.010                                    |
|                                      | CALCIUM SODIUM                                      | .050 0.060 0.010 0.150 0.160 0.010 12150 |
|                                      | Mg<br>IAG-<br>SIUM                                  | 0.150                                    |
| INT                                  | SULFUR                                              | 0.010                                    |
| ALYSIS-PERCENT                       | K20<br>POTASH                                       | 0.060                                    |
| ANALYSI                              | 05 K K20 SULFUR N<br>DS- POTASH SULFUR N<br>TE SIUM | 0.050                                    |
| REPORT OF AN                         | P205<br>PHOS-<br>PHATE                              | 0.01 0.02 0.                             |
| REF                                  | PHOS-<br>PHORUS                                     | 0.01                                     |
|                                      | NITRO-<br>GEN-                                      |                                          |
|                                      | SAMPLE<br>NUMBER                                    | 28 MI RD<br>BLK 687                      |

しての

| ۵ŭ                    | 100<br>100<br>100 |
|-----------------------|-------------------|
| ZINC                  |                   |
|                       | 0                 |
| Mn Cu<br>Manga Copper |                   |
| ALUMI-<br>NUM         | 47<br>20          |
| Pon<br>NON            | 0.2 24.3          |
| MUIDOS                | 0-2               |
| CALCIUM               | 61<br>64          |
| Mg<br>MAG-<br>NESIUM  | 0.0<br>%          |
| K K20 SULFUR          | N<br>0            |
| POTASH                | 44<br>*<br>**     |
| POTAS-<br>SIUM        |                   |
| PAOS<br>PHATE         | 0.0               |
| PHOS-<br>PHORUS       | 0.2               |
| NITRO.<br>GEN         | F                 |
| SAMPLE<br>NUMBER      | 26 MI RD          |

= 0.6 dS/m Organic Metter = 3.53 % Organic Nitrogen = 0.083 = 3.53 Ammonia Nitrogen Nitrate Nitrogen H CrN Ratio = 24:1 Soluble Salts Volatile Solids Chioride pH = 7.2 \* % To convert to pounds of nutrients/ton က တ လ as received, muitiply pounds of Moisture = Moisture = nutrients/ton as reported by (100 - moisture X)/100. Reported on an as-received basis Reported on a dry basis Remarks: 

= <0.0003 % = 0.0008 %

0.20 %

Our reports and latters are for the exclusive and confidential use of our clients not be reproduced in whole or in part, nor may any reference be made to the work, the results or the company in any advertising, news release, or other pub-lic amouncements without obtaining our prior written authorization. This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after testing.



Brichetto b

POUNDS OF NUTRIENTS/TON

КеМ ese :40 8 I **S**0

٩٠٩

REPORT NUMBER

05-128-029

10 TO: TO:

98SE

|                                                                                                                                             |             |                   | RN LABORATORIES, INC.<br>odesto, California 95351 • Phone 209-529-400 | 80      |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------------------------------------------------------------------|---------|
| (ADDRESS & DAVISOR & + POWTER ) & D 14                                                                                                      | CHAIN       | I OF C            | JSTODY 05 181105                                                      |         |
| MS. Lori DRITH                                                                                                                              |             | •                 | 916 941-3850                                                          |         |
| Client CONAGRA OARD                                                                                                                         | ALR         |                   | _ PAT DUNIN Phone 209-848-7930                                        | -       |
| Address 554 COSEMETE                                                                                                                        |             |                   | _ DINNUENV & CC to:                                                   | •       |
| Dakdale CA                                                                                                                                  | Zip .       | • • •             | - 5060                                                                | -       |
|                                                                                                                                             |             |                   |                                                                       | -       |
| Signature of person authorizing work<br>under terms stated below*                                                                           |             | <u> </u>          |                                                                       |         |
| *Net 30 days. All accounts past due will be so<br>*Hazardous materials are the property of the<br>picking up hazardous wastes may be assess | clíent. I h | e client is       | responsible for proper dispoganor lightatopus wastes, onents not      |         |
| PROJECT ID                                                                                                                                  |             | ANA               |                                                                       |         |
| MUD WATVER                                                                                                                                  |             | No.<br>of<br>Con- |                                                                       |         |
| SAMPLED BY: (signature):                                                                                                                    |             | tain-             | KI A KARKS                                                            |         |
| Jackufk                                                                                                                                     |             |                   |                                                                       |         |
| Date Time contraction                                                                                                                       |             |                   |                                                                       |         |
| Date Time Grab Comp.                                                                                                                        | 10.1)       | 7 x               |                                                                       |         |
| Cichia 1/10 × 63-28-26                                                                                                                      | 1.          | 1 X               |                                                                       |         |
| 1/20/05 14:20 × 64 - 31-40                                                                                                                  | - pr        |                   | XXXXXX S4057 -                                                        |         |
| 1345 11:15 × 63-25-15                                                                                                                       | 11          |                   | $c \times c \times c \times c + c = -$                                |         |
| fuls 12: 1 × 0257-04                                                                                                                        |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
| X                                                                                                                                           |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
|                                                                                                                                             |             |                   |                                                                       |         |
|                                                                                                                                             | Date        | Time              | Received by (signature):                                              | me      |
| Relinquished by (signatore):                                                                                                                | 4/30/0      | 2.45              | (stocki flade 63/05/24                                                | 50      |
| Relinquished by (signature):                                                                                                                | Date        | Time              | Received by (signature): Date Ti                                      | me      |
| U                                                                                                                                           |             |                   |                                                                       |         |
| Relinquished by (signature):                                                                                                                | Date        | Time              | Received by (signature): Date Ti                                      | me      |
| Relinquished by (signature):                                                                                                                | Date        | Time              | Received by (signature): Date Ti                                      | me      |
| - กษณหนุมราชน มหุ (ราษาสเขาสร                                                                                                               | 2010        |                   |                                                                       |         |
| Relinquished by (signature):                                                                                                                | Date        | Time              | Received by (signature): Date Ti                                      | me      |
|                                                                                                                                             |             |                   |                                                                       |         |
| Site Time:                                                                                                                                  | Jane-       |                   | Driving Time:<br>Start; Finish: Total Hours:                          |         |
| Start: Finish: Total                                                                                                                        | Hours:      | <u> </u>          |                                                                       | <u></u> |

rest

Dedicated Exclusively to Providing Quality Analytical Services

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω.                                 |                           | And and a second s | a na far an                  |                     |              | a na bing ca na bing ang |                                              | Jud men di Antonio II. |                                       |       |              |                                                                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|--------------|--------------------------|----------------------------------------------|------------------------|---------------------------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | ( Colored Colo | 9)<br>7)<br>7)<br>7)<br>7)<br>7)   |                           | Saturation<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 <b>4</b> ,8                                                    | •<br>•<br>•         | হা<br>৩<br>৩ | \$<br>•<br>•             | 25.6                                         |                        |                                       |       |              |                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           | B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                | 0.2                 | c,           | 0.1                      | 0.1                                          |                        |                                       |       | LABORATORIES | 9.6                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER                              |                           | CI<br>CI<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                              | 0.3                 | 0.1          | 0.8                      | 0.1                                          | •<br>•                 |                                       | -     | BUTT         | Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. Copyright 1977 |
|          | <b>) 529-4736</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | •                         | E.C.<br>dS/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  | 0.2                 | 0°2          | с<br>С                   | 0<br>. 2                                     |                        |                                       |       | AGRICULTURAL | may any referer<br>en authorization                                                                                                                                                                                                                                                                                                        |
|          | LABORATORIES<br>29-4080 • FAX (209) 529-4736<br>6-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : MU<br>ted by: PA<br>07/06/2005   | Ъ.                        | HCO3<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                | 4<br>8<br>4         | 0.8          | ۍ.<br>۳                  | 0.7                                          |                        |                                       | · · · | WESTERN      | e or in part, nor<br>ng our prìor writt                                                                                                                                                                                                                                                                                                    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grower:<br>Submitted<br>Date: 07/( | •                         | co3<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                              | 0.0                 | 0 0          | 0.0                      | 0.0                                          | :                      |                                       |       | 8<br>8<br>7  | oroduced in whol<br>s without obtàini                                                                                                                                                                                                                                                                                                      |
| 1 I<br>• | JRAL<br>• (209)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | . <u>.</u>                | μd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                              | 0.0                 | 0<br>भ       | ۰.<br>۲                  | ອ <b>້</b> .                                 | -                      |                                       |       |              | ay not be reg<br>nouncement                                                                                                                                                                                                                                                                                                                |
|          | RICULTURAL<br>lesto, CA 95351 • (209) 5<br>Client No: 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                           | Mg<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                              | 0.5                 | 2.4          | 0.7                      | · · · ·                                      |                        |                                       |       |              | ur clients, and ma<br>ar other public an                                                                                                                                                                                                                                                                                                   |
|          | AGRIC<br>• Modesto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | Report                    | Ca<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                                                              | цо<br>              | ນ.<br>ເ      | 0.1                      | ທ<br>ບ                                       |                        | -                                     |       |              | idential use of o<br>news release, d                                                                                                                                                                                                                                                                                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×.                                 | s marcu<br>s marcu<br>s — | Na<br>meq/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | υ<br>Ο                                                           | 0.0                 | 0.6          | 1.5                      |                                              |                        |                                       |       |              | slusive and confi<br>any advertising,                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OAKDALE<br>SEMITE<br>CA 95361      | Soil Salinity Report      | d<br>S<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~<br>• •                                                         | <ul><li>0</li></ul> | × 0.         | 0.7                      | · • • •                                      |                        |                                       |       |              | rs are for the exo<br>the company in ∂                                                                                                                                                                                                                                                                                                     |
|          | A & L WEST<br>1311 Woodland Ave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGRA<br>S YOS<br>ALE,              |                           | ers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                | 0°0                 | 0.3          | <b>.</b><br>.,           | ъ<br>0                                       |                        |                                       |       |              | eports and letter<br>the results, or t                                                                                                                                                                                                                                                                                                     |
|          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CON<br>554<br>OAKD                 |                           | Lab<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54055                                                            | 54056               | 54057        | 99028<br>54028           | 54059                                        |                        |                                       |       |              | Our r<br>work                                                                                                                                                                                                                                                                                                                              |
|          | 05-181-105<br>EPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                           | Sample<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63281                                                            | 63282               | 64314        | 63251                    | 05200                                        |                        |                                       |       |              |                                                                                                                                                                                                                                                                                                                                            |
| L        | 05<br>EPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , uton                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nondalasis dependenti dal <sup>1</sup> al della proper del Maria |                     |              |                          | anan a ta t |                        | ـــــــــــــــــــــــــــــــــــــ | •     | <i>t</i>     | . • •                                                                                                                                                                                                                                                                                                                                      |

**1**~~\*

.

**A & L WESTERN AGRICULTURAL LABORATORIES** 

<u>×</u>

5-181-105 PORT NUMBER

1311 Woodland Ave. • Ste. #1 • Modesto, CA 95351 • (209) 529-4080 • FAX (209) 529-4736

5016-M Client No:

MUD WATER GROWER:

PAT DUNN SUBMITTED

B.∵

OAKDALE, CA 95361

CON AGRA OAKDALE 554 S YOSEMITE

g

ч

**AGL WESTERN LABORATORIES, INC.** Ŵ

| E OF H                | TE OF REPORT                   | 07/06/2             | 0/2005                                        | PAGE                                | que                           | SO                         | SOIL ANALYSIS REPORT<br>(SEE EXPLANATION ON BACK)               | YSIS R                                   | EPOF<br>ACK) | T.                            | -                           |                                            |
|-----------------------|--------------------------------|---------------------|-----------------------------------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------------------------------------------|------------------------------------------|--------------|-------------------------------|-----------------------------|--------------------------------------------|
|                       |                                | ORGANIC             |                                               | PHOSPHORUS                          | POTASSIUM                     | POTASSIUM MAGNESIUM        | I CALCIUM                                                       | SODIUM                                   |              | bH North                      |                             | Cation                                     |
| <b>AMPLE</b><br>JMBER | ample' lab<br>Jmber Number %   | MATET<br>BATE       | ER Pi<br>(Weak Bray)<br>ENR Ibs./A ppm-P RATE | NaHCO3-P<br>(Olsan Method)          | K<br>ppm-K RATE               | Mg<br>•<br>ppm-Mg RATE     | pm-2: + 1:<br>BMTE                                              | Na<br>**<br>Ppm-Na RATE                  | SolL         | BUFFER                        | GEN<br>GEN<br>H<br>meg/100g | Exchange<br>Capacity<br>C.E.C.<br>meq/100g |
| 281                   | 281 54055                      | 1.01                |                                               | 20**<br>20*                         | 70M                           | 81L                        | 605L                                                            | 13VL                                     | 5 <b>.</b> 0 | 0<br>-                        | ເ <u>ດ</u><br>ເປັ           | 0.4                                        |
| 282                   | 282 54056                      | <br>****            | 57 51VH                                       | **<br>00<br>T                       | 142M                          | 132L                       | 1607H                                                           | 22VL                                     | 0.0          | 0 S                           | 1.7                         | الم<br>1-                                  |
| 5                     | 54057                          | 2-0L                | 11                                            | ₩<br>₩<br>₩                         | 171版                          | 232M                       | 1429L                                                           | 24VL                                     | 4-8          | 0.<br>0                       | ດ<br>ເມ                     | ۲.<br>من<br>۲.                             |
| E<br>S<br>S           | 54058                          | است<br>معاد<br>السر | 52 43VH                                       | 4 35VH                              | 357VH                         | 128M                       | 1238VH                                                          | 174                                      | یں<br>۲-     |                               | 0.0                         | പ<br>ന                                     |
| 0653                  | 54059                          | ы<br>г.             | 61 30H                                        | н<br>н<br>(1)                       | 39L<br>39L                    | 75L                        | 872L                                                            | 29L                                      | ष            | 6.7                           | с <b>і</b> .                | 7.3                                        |
|                       |                                |                     |                                               |                                     | ** NaHCO3-P                   | unrett                     | iable at                                                        | this soi                                 | Ha           |                               |                             |                                            |
| AMPLE<br>UMBER        | NITROGEN<br>NO <sub>3</sub> -N | SULFUR<br>SQ4-S     | ZINC<br>ZINC<br>Zn<br>Ppm-Zn RATE             | MANGA-<br>NESE<br>Mn<br>ppm-Wn RATE | RON (<br>Fe<br>ppm-Fe RATE pp | COPPER<br>Cu<br>pm-Cu RATE | BORON EXCESS<br>BORON EXCESS<br>LIME<br>B<br>RATE<br>Ppm-B RATE | SOLUBLE<br>SSALTS<br>EE<br>mmhos/cm RATE |              | CHLORIDE<br>CI<br>Dpm-CI RATE |                             | SAND S                                     |
| 281                   | 241                            | ଞ୍ଚ<br>             | 0.5VL                                         | Ϋ́                                  | HV811                         | 1. 1M                      | 0.1VL L                                                         | 0.1VL                                    |              |                               |                             |                                            |
| 1282                  | لے<br>ص                        | 2<br>G              | 1.3M                                          | 20H                                 | 42VH                          | 0.9M                       | 0.4L L                                                          | 0.2VL                                    | ,<br>VL      | ·                             |                             |                                            |
|                       |                                |                     | -                                             | -                                   | -                             | _                          |                                                                 | ~                                        | -            |                               | -                           |                                            |

10 0

9.6 71.3 15.0

പ്പ ന

0.0

39.5 47.0

10.5

4.2

ය ං

1007 1007 1007

7.0 47.4

സ പ

% Na

% H

\* 3

» %

% Y

(COMPUTED)

CATION SATURATION

о О

0 °

11.1 12.8 75.1

(~~ \*\*\*

8.5 60.0 28.5

1.4

| • |   |   |   |   |
|---|---|---|---|---|
|   |   |   |   | • |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   | • |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   | • |
|   |   |   |   |   |
|   |   |   |   |   |
|   | • |   |   |   |
|   |   |   |   |   |
|   |   |   | • |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   | c |   |   |

|                                                                                                  |                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |           |            |                                                                                                                | S                       | -                   |                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|-----------|------------|----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARTICLE SIZE ANALYSIS                                                                           | 「新聞がない」と                              |                                                                                             | -         |            | This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after besting. | ANICUTURAL LABORATORIES | MIKE BUTTRESS, CPAG | : P205<br>E K505                                                                                                                                                    |
| PARI<br>% 1 %   %                                                                                | SAND SILT CLAY                        |                                                                                             |           |            | This report applies only to the sample(<br>a maximum of thirty days after pesting.                             | A & L WESTERN AGH       | BY MIKE             | MULTIFLY THE RESULTS IN ppm BY 4.6 TO CONVERT TO LBS. PER ACRE P <sub>2</sub> Os<br>MULTIFLY THE RESULTS IN ppm BY 2.4 TO CONVERT TO LBS. PER ACRE F <sub>2</sub> O |
|                                                                                                  |                                       |                                                                                             |           |            |                                                                                                                |                         |                     | IV 4.6 TO C<br>3Y 2.4 TO C                                                                                                                                          |
| CHLORIDE<br>CL                                                                                   | ppm-CI RATE                           |                                                                                             | 1         |            | ;                                                                                                              |                         | ,<br>,              | RESULTS IN ppm F                                                                                                                                                    |
| SOLUBLE                                                                                          | mmhos/cm RATE ppm-Cl RATE             | 0.1VL                                                                                       | 0.2VL     | 0.5L       | 0-3L                                                                                                           | 0*2F                    | -                   |                                                                                                                                                                     |
| EXCESS<br>LIME<br>RATE                                                                           | E LANSE                               | l                                                                                           |           | أسر        |                                                                                                                |                         |                     |                                                                                                                                                                     |
| BORON<br>B                                                                                       | ppm-B RATE                            | 0.1VL                                                                                       | 0.4L      | 0.2VL      | 0.1VL                                                                                                          | 0.2VL                   |                     | NONE (N).                                                                                                                                                           |
| COPER                                                                                            | ppm-Cu RATE                           | 1. 1M                                                                                       | 42VH 0.9M | 0.8L       | 28VH 4.1VH                                                                                                     | 0.7L                    |                     | CODE TO PATING-VERY LOW (L), LOW (L), MEDIUM (M), HIGH (H), VERY (VH), AND I<br>WITT STIMATED NITROGEN RELEASE                                                      |
| R<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | ppm-Fe.RATE                           | 17H 118VH                                                                                   | 42VH      | 117VH 0.8L | 28VH                                                                                                           | 47VH 0.7L               |                     | UM (M), HIGH (H)                                                                                                                                                    |
| MANGA-<br>NESE<br>Mn                                                                             | ppm-Mn RAIE                           | Ϋ́                                                                                          | 20H       | 14H        | 14H                                                                                                            | 13H                     |                     | .), LOW (L), MEDI                                                                                                                                                   |
| ZINC                                                                                             | ppm-NO3-N RATE PPM-S RATE PDM-ZA RATE | 0.5VL                                                                                       | . 3M      | 0.9L       | 3.4H                                                                                                           | N8 .<br>T               |                     | CODE TO RATING- VERY LOW (VL), LOW<br>ENR - ESTIMATED NITROGEN RELEASE                                                                                              |
| SULFUR<br>SO4-S                                                                                  | PPUS RATE                             | аг<br>В                                                                                     | 22        | 31         | الد<br>©                                                                                                       | al<br>Ø                 |                     | CODE TO RATIN<br>ENR - ESTIMAT                                                                                                                                      |
| NITROGEN SULFUR<br>NO <sub>3</sub> -N SO <sub>4</sub> -S                                         | ppm-NO <sub>3</sub> -N RATE           | 24                                                                                          | ц<br>С    | 26H        | 4VL                                                                                                            | 37H                     |                     | • 1 ]                                                                                                                                                               |

1590

253

314

| A & L WESTERN AGRICULTURAL LÁBORATORIES     A & LWESTERN AGRICULTURAL LÁBORATORIES       1311 Woodland Ave Ste, #1 + Modesto, CA 98351 - (200) 529-478     C11 = m T NO: 5010-£4       1311 Woodland Ave Ste, #1 + Modesto, CA 98351 - (200) 529-478     C11 = m T NO: 5010-£4       000men     ML     ML       0100men     ML     ML       01100 - CO MULE     ML     ML       01101 - CO MULE     ML     ML       01102 - CO MULE     ML     MATER       01102 - CO MULE     ML     ML       01103 - CO MULE     ML     ML       01104 - CO MULE     ML     ML       01103 - CO MULE     ML     ML       01104 - CO MULE     ML     ML       0110 - CO MULE     ML     ML       0110 - CO MULE     ML     ML       0111 - SC     ML     ML       0111 - SC     ML        0111 - SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A & L WESTERN AGRICULTURAL LÁBORATOR<br>1311 Woodland Ave Ste. #1 - Modesto, CA 95351 - (209) 529-4080 - FAX (209) 52<br>- CI Jent No. : 5016-M     -       1311 Woodland Ave Ste. #1 - Modesto, CA 95351 - (209) 529-4080 - FAX (209) 52<br>- CI Jent No. : 5016-M     -     -       201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201 / 201                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cation         CATION SATURATION (COMPUTED)           Cation         Cation Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Cation         Saturation (COMPUTED)           Saturation (COMPUTED)         Saturation (COMPUTED)           Saturation (COMPUTED)         Saturation (COMPUTED)           Saturation (COMPUTED)         Saturation (COMPUTED)           Patternet         Saturation (COMPUTED)           As L WESTERN AGRICULTURAL LABORATORIES         Saturation (COMPUTED)           Saturation (COMPUTED)         Saturation (COMPUTED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| A & L WESTERN AGRICULTURAL LÁBORATOR<br>1311 Woodland Ave Ste. #1 - Modesto, CA 95351 - (209) 529-4080 - FAX (209) 52<br>CI I = DT NO: 5016-M       CI I = DT NO: 5016-M       GINMER:<br>MID WATER<br>S54 S VOSENITE<br>554 S VOSENITE<br>551 PH<br>MITER:<br>MID WATER<br>FRI DUNN<br>MITER:<br>MID MATER<br>FRI DUNN<br>MID MATER<br>FRI DUNN<br>MITER:<br>MID MATER<br>FRI MID MATER<br>FRI DUNN<br>MITER:<br>MID MATER<br>FRI DUNN<br>MITER:<br>MID MATER<br>FRI DUNN<br>MID MATER<br>FRI MID MATER<br>FRI MID MATER<br>FRI MID MATER<br>MID MATER<br>FRI MID M  | CATION SATU<br>(C) Mg<br>(C) Mg<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| A & L WESTERN AGRICULTURAL LÁBO<br>1311 Woodland Ave Ste. #1 - Modesto, CA 95351 - (200) 529-4080 -<br>Ci lient No: 5016-M       CI MALS WAER CARLES       CI IEN NO: 5016-M       GROWER       MUD WATER<br>DAKDALE, CA 95361       CON AGRA CAKDALE       CON AGRA CAKDALE       CON AGRA CAKDALE       MUD WATER       CON AGRA CAKDALE       CON AGRA CAKDALE       CON AGRA CAKDALE       MUD MALS       CON AGRA CAKDALE       CON AGRA CAKDALE       CON AGRA CAKDALE       DAKDALE, CA 93361     AGROWEN       MULTER       CON AGRA CAKDALE       AGRA CAKDALE       AGRA CAKDALE       MUTER       MUTER <td <="" colspan="2" td=""><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| A & L WESTERN AGRICULTURAL<br>1311 Woodland Ave. • Ste. #1 • Modesto, CA 95351 • (200) 5<br>C 1 1 ent No: 501         CI 1 ent No: 501         MUD         SubMITED         MUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HYDRO-<br>FFEEA GEN<br>GEN Med 1000<br>A 100<br>A 1000<br>A 1000                                                                                                                                                   |  |  |
| A & L WESTERN AGRICULTI<br>1311 Woodland Ave. • Ste. #1 • Modesto, CA 9535<br>CI Jent N<br>GROWER:<br>DAKDALE, CA 95361       CON AGRA OAKDALE<br>954 \$ YOSEMITE<br>DAKDALE, CA 95361       07/08/2005     PAC       07/08/2005     PAC       10/10/2     PAC       07/08/2005     PAC       10/10/2     2/01/2       10/10/2     2/01/2       10/10/2     2/01/2       10/10/2     2/01/2       10/10/2     2/01/2       10/11/2     1/11/2       10/11/2     1/11/2       10/11/2     1/11/2       10/11/2     1/11/2       10/11/2     1/11/2       11/11/2     1/11/2       11/11/2     1/11/2       11/11/2     2/11/4       11/11/2     2/11/4       11/11/2     2/11/4       11/11/2     1/11/4       11/11/2     1/11/4       11/11/2     1/11/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| A & L WESTERN AGRIC<br>1311 Woodland Ave. • Ste. #1 • Modesto,<br>1311 Woodland Ave. • Ste. #1 • Modesto,<br>554 \$ YOSEMITE<br>554 \$ YOSEMITE<br>552 \$ 11<br>1.0L 50 \$ PAGE<br>1.0L 50 \$ PAGE<br>1.0L 50 \$ 23M \$ 20* \$ 70M \$ 61L<br>1.3L 52 \$ 30H \$ 357YH \$ 132L<br>1.3C 50 \$ 31* \$ 36F<br>1.5L 61 \$ 30H \$ 37* \$ 177N \$ 22M \$ 132L<br>75L<br>2.0L 69 \$ 11L \$ 77* \$ 177N \$ 22M \$ 132L<br>1.3C 50 \$ 31* \$ 36F<br>1.5L 61 \$ 30H \$ 37* \$ 142M \$ 132L<br>500 \$ 60N \$ | SODIUM<br>Reprint Addition<br>13VL<br>13VL<br>13VL<br>13VL<br>13VL<br>13VL<br>13VL<br>13VL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| A & L WESTERN AGR<br>1311 Woodland Ave Ste. #1 - Mode<br>554 S YOSEMITE<br>DAKDALE, CA 95361<br>07/05/2005 AGE<br>07/05/2005 AGE<br>1.0L 50 23M 20* 142M MAINEN<br>MATER<br>EN Weithon PHOSPHORUS<br>07/05/2005 AGE<br>1.0L 50 23M 20* 70M 61L<br>1.0L 52 43VH 35VH 357VH 128M<br>1.1L 52 43VH 35VH 35VH 128M<br>1.1L 52 30H 31* 20* 20H 20<br>1.1L 52 30H 31* 20* 20H 20<br>1.1L 12 52 43VH 35VH 35VH 128M<br>1.1L 52 30H 31* 20* 20H 20.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CALCU<br>505<br>505<br>505<br>505<br>1429<br>300<br>1238<br>300<br>1238<br>1220<br>1<br>1238<br>1238<br>1238<br>1238<br>1238<br>1238<br>1238<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| A & L WESTER       1311 Woodland Ave Ste.       1311 Moodland Ave.       1311 Moodland Ave.       1311 Moodland Ave Ste.       1311 Moodland Ave.       1311 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAGNESIUN<br>MAGNESIUN<br>61L<br>61L<br>75L<br>75L<br>75L<br>75L<br>75L<br>75L<br>75L<br>75L<br>75L<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311 <td>POTASSIUN<br/>Rpm.KRATE<br/>70M<br/>70M<br/>70M<br/>70M<br/>70M<br/>70M<br/>70M<br/>70M</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POTASSIUN<br>Rpm.KRATE<br>70M<br>70M<br>70M<br>70M<br>70M<br>70M<br>70M<br>70M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1311       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       131       14       15       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <tr< td=""><td>HORUS<br/>Cotentification<br/>Papena-Prantic<br/>2:0 * *<br/>2:0 * *<br/>3:5 × *<br/>1:7 × *</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HORUS<br>Cotentification<br>Papena-Prantic<br>2:0 * *<br>2:0 * *<br>3:5 × *<br>1:7 × *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| CON AGE<br>554 S. AGE<br>554 S. AGE<br>6554 S. AGE<br>000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PHO         Constraint         PHO           With Mark Mark         Weet Baay         Weet Baay           With Mark Mark Mark Mark Mark Mark Mark Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| OHI NUMBER       011 NUMBER       ND       ND       ND       1281       1314       54056       1281       54056       1281       54056       1281       54056       1281       54056       1281       54056       1281       54056       1314       54056       1281       54056       1314       1281       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NUMBER<br>NUMBER<br>054055<br>54055<br>54055<br>54055<br>74055<br>054055<br>74055<br>054055<br>74055<br>054055<br>74055<br>054055<br>74055<br>054055<br>74055<br>054055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>74055<br>740557<br>740557<br>740557<br>740557<br>74057<br>74057<br>74057<br>74057 |  |  |

....

| a second and the                             | a a saint a shi ta sa       | 2                                       |                                              |              |                                                             | · · ·                 |                                                                                        | ল্যায় হয                                | ia mang                                                                                                                                                                                                                                                                                                                                                  | وروايي ويركون                              | ••••              | • •              | •.                                                                                                             |                                                                                                   | *<br>• ,       | -                                                                                                                                         |
|----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|----------------------------------------------|--------------|-------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| AGL WESTERN LABORATORIES, INC.               |                                                                 | PERCENT<br>CATION SATURATION (COMPUTED) | G % %                                        |              |                                                             |                       |                                                                                        |                                          | MALYSIS<br>SOIL                                                                                                                                                                                                                                                                                                                                          | EXIVE                                      |                   |                  | sted. Samples are retained                                                                                     | RAL LABORATORIES                                                                                  | rsa, CPAG      |                                                                                                                                           |
| 10                                           |                                                                 | 88996<br>9799                           | , <b>* X</b>                                 |              |                                                             |                       | 00<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |                                          | %                                                                                                                                                                                                                                                                                                                                                        | 3 SILF CLAY                                |                   |                  | This report applies only to the sample(s) tested. Samples are retained a maximum of thirty days after testing. | A & L WESTERN AGRICULTURAL LABORATORIES                                                           | MIKE BUT HESS. | MULTIPLY THE RESULTS IN ppm BY 4.6 TO CONVERT TO LBS. PER ACRE P205<br>MULTIPLY THE RESULTS IN ppm BY 2.4 TO CONVERT TO LBS. PER ACRE K20 |
| <b>RATORIES</b><br>• FAX (209) 529-4736      |                                                                 | HYDRO-                                  | GEN<br>H<br>Capacity<br>H<br>CEC<br>meq/100g | × *          |                                                             | <u>, ,</u>            | к.<br>М                                                                                |                                          | and and a second se<br>Second second s<br>Second second s | SAND                                       |                   |                  | This n<br>a max                                                                                                | 8<br>V                                                                                            | BY             | BY 4.6 TO CONVERT<br>BY 2.4 TO CONVERT                                                                                                    |
|                                              |                                                                 | Hd                                      | SOIL BUFFER                                  | 5.0 8.7      |                                                             | ភ្នំ ស្               | ۲.<br>۲۶<br>۵                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                          | BRATE ppm-CIRATE<br>1 V L                  | ۲<br>۲            |                  |                                                                                                                |                                                                                                   |                | THE RESULTS IN ppm<br>THE RESULTS IN ppm                                                                                                  |
| <b>ZAL</b><br>(209)                          | ANALYSIS REPORT<br>BUNN<br>BE EXPLANATION ON BACK)              | NUIGOS                                  | Na<br>•••<br>ppm-Na RATE                     |              |                                                             |                       | 1<br>3<br>7                                                                            | this so                                  | EXCESS SOLUBLE<br>LIME<br>RATE                                                                                                                                                                                                                                                                                                                           | mmhos/cr                                   | L 0.2VL           | С<br>, О<br>,    |                                                                                                                | 7<br>0<br>1                                                                                       |                |                                                                                                                                           |
| <b>D</b> S is Nor                            |                                                                 | UMCALCIUM                               | Ga<br>HE ppin-Ca<br>ME ppin-Ca RATE          |              | 10007H                                                      | an fan                |                                                                                        | i ab é o e e                             | ion<br>B                                                                                                                                                                                                                                                                                                                                                 | ppm-BRATE<br>0_1V/L                        | 0.4L              | 0,2VL            | 0 . i VL                                                                                                       | 0.24                                                                                              | ,              | D NONE (N).                                                                                                                               |
| <b>「ERN AGRIC</b><br>・ Ste. #1 ・ Modesto,    | ,<br>BS<br>S                                                    | SIUM MAGNESIUM                          | MG<br>•<br>•<br>BATE ppm-Mg RATE             | 119 1407     | ý                                                           | 357VH 128W            | 192 - 18F                                                                              | <u> E. 1</u> (Max <del>- 2</del>         | COPPER                                                                                                                                                                                                                                                                                                                                                   | TE ppm-cu RATE                             | 10.0 <sup>1</sup> | н<br>С.<br>Н     | H<br>*<br>*                                                                                                    |                                                                                                   |                | ih (H), VERY (VH), AN                                                                                                                     |
|                                              |                                                                 | IOA                                     | NaHCO3-P<br>(Oleen Method)<br>               |              |                                                             |                       | 8<br>8<br>8<br>7**<br>5)                                                               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | MANGA-<br>NESE IRON<br>Mn Fe                                                                                                                                                                                                                                                                                                                             | DDIR WI RATE (DDIR FOR RATE<br>17H 1124 VH | 20H 42VH          | H2711 H25        | 14H ZEVH                                                                                                       | HV7 &<br>13H                                                                                      |                | CODE TO RATING: VERY LOW (VL), LOW (L), MEDIUM (M), HIGH (H), VERY (VH), AND NONE (<br>ENR - ESTIMATED NITROGEN RELEASE                   |
| A & L WES <sup>1</sup><br>1311 Woodland Ave. | OAKDALE<br>SEWITE<br>CA 95361<br>2005 PAGE                      | SUROHASOHA                              | PI<br>(Weak Bray)<br>(0)<br>PIPERATE 00      | NE2          |                                                             | HAC<br>- R            | F                                                                                      |                                          |                                                                                                                                                                                                                                                                                                                                                          | D. 5VL                                     | ۲<br>۳<br>۳       | 0.81             | T<br>T<br>T                                                                                                    | 22<br>4<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                | VERY LOW (NL), LOW<br>NITROGEN RELEASE                                                                                                    |
|                                              | CON AGRA CAKDA<br>554 S VOSENITE<br>04KDALE CA 95<br>07/00/2005 |                                         | MALTER<br>•<br>Enr<br>Bate Ibs/A             |              |                                                             | 1 ead<br>3 fre        | 0)<br>                                                                                 |                                          | SULFUR<br>SQ1-S                                                                                                                                                                                                                                                                                                                                          | SPPN-SRATE                                 | Ξ,                | 3                | 10                                                                                                             | -<br>Ro                                                                                           | -              |                                                                                                                                           |
| ι <u>ο</u>                                   |                                                                 |                                         | LAB<br>NUMBER                                |              | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100 |                       | 0<br>0<br>7<br>0<br>7                                                                  |                                          | NITROGEN<br>NO <sub>3</sub> -N                                                                                                                                                                                                                                                                                                                           | ppm-NO3-N/BATE                             |                   | i<br>S<br>S      | 47                                                                                                             | н<br>С<br>С                                                                                       | -              | •                                                                                                                                         |
|                                              |                                                                 |                                         | UNBER 1                                      | 6825<br>2825 | cult 5<br>W 9<br>C C C                                      | ው ምር<br>ም አርን<br>የ ፍላ | 0<br>0<br>2<br>2<br>2                                                                  |                                          | AMPLE                                                                                                                                                                                                                                                                                                                                                    | 3283                                       |                   | -<br>-<br>-<br>- | +~<br>10<br>01<br>01                                                                                           | 2590                                                                                              |                |                                                                                                                                           |

| A 8<br>131                                                        | A & L WESTERN A<br>1311 Woodland Avenue,                              | N AGRICULTURAL LABORATORIES, INC.<br>nue, Suite 1 • Modesto, California 95351 • (209) 529-4080                             | BORATORIE<br>ornia 95351 • (209                               | S, INC.                                                | Emergen Frankreiter                   |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|
| <b>Report No:</b> 05-181-105                                      |                                                                       | Account No: 5016                                                                                                           |                                                               |                                                        |                                       |
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361 | •                                                                     | Project Id: MUD WATER                                                                                                      | TER                                                           | Submitted by: Pat Dunn                                 | · · · · · · · · · · · · · · · · · · · |
| Lab Number: 54059                                                 |                                                                       | Sample ID: 02-59-04<br>SOIL ANALYSIS REPORT                                                                                | 14                                                            | Date Received: 06/30/2005<br>Date Reported: 07/07/2005 | 30/2005<br>07/2005                    |
| Det                                                               | Detection Limit                                                       | Analyte                                                                                                                    | Level Found                                                   |                                                        |                                       |
| 0.0.0.0<br>0.1<br>1                                               | 50 mg//kg<br>2 mg//kg<br>0.1 %<br>0.1 %<br>1.0 meq/100g<br>Calculated | Total Kjeldahl Nitrogen<br>NH <sub>4</sub> -N<br>Total Organic Carbon<br>Moisture<br>Cation Exchange Capacity<br>C:N Ratio | 973 mg//kg<br>BDL<br>0.87 %<br>6.18 %<br>12.2 meq/100g<br>9:1 |                                                        |                                       |
| Cal                                                               | Calculated                                                            | Total Nitrogen                                                                                                             | 978 mg//kg                                                    |                                                        |                                       |
| ·<br>·<br>·                                                       |                                                                       |                                                                                                                            | •                                                             |                                                        |                                       |
| BDL - INDICATED THE LEVEL FOUND IS BELOW THE ESTABLISHED D        | S BELOW THE ESTABLIS                                                  | HED DETECTION LIMIT FOR THAT ANALYTE                                                                                       | ni                                                            |                                                        | . ·                                   |
| A & L Western Agricultural Laboratories                           | oratories                                                             |                                                                                                                            |                                                               |                                                        |                                       |

•

,

٩

•

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

Page 5 of 5

. ¥

| <b>Report No:</b> 05-181-105                                      |                                | Account No: 5016                                                                          | •                           |                                                        |
|-------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361 | DALE<br>5361                   | Project Id: MUD WATER                                                                     | TER .                       | Submitted by: Pat Dunn                                 |
| Lab Number: 54058                                                 |                                | Soll ANALYSIS REPORT                                                                      | 15<br>XT                    | Date Received: 06/30/2005<br>Date Reported: 07/07/2005 |
|                                                                   | Detection Limit                | Analyte                                                                                   | Level Found                 |                                                        |
|                                                                   | 50 mg//kg<br>2 mg//kg<br>0.1 % | Total Kjeldah! Nitrogen<br>NH₄-N<br>Total Organic Carbon                                  | 750 mg//kg<br>BDL<br>0.64 % |                                                        |
|                                                                   |                                | Moisture<br>Cation Exchange Capacity<br>C:N Ratio<br>Total Nitrogen                       |                             |                                                        |
|                                                                   | •                              |                                                                                           |                             | ·<br>·<br>·                                            |
|                                                                   |                                |                                                                                           |                             |                                                        |
|                                                                   |                                |                                                                                           |                             |                                                        |
| - INDICATED THE LEVEL F                                           | OUND IS BELOW THE ESTABLIS!    | BDL - INDICATED THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE | щ                           |                                                        |
| A & L Western Agricultural Laboratories                           | ral Laboratories               |                                                                                           |                             |                                                        |
| kodert Butterrield<br>Laboratory Director                         |                                |                                                                                           |                             |                                                        |

j

| Report No: 05-181-105<br>Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361<br>Lab Number: 54057<br>Detection Limit<br>50 mg//kg<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.1 %<br>0.2 mg//kg<br>Calculated<br>Calculated |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                                                                   | A & L WESTERN A<br>1311 Woodland Avenue,                                            | A & L WESTERN AGRICULTURAL LABORATORIES, INC.<br>1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080     | <b>ABORATORIES</b> ,<br>tornia 95351 • (209) 53                               | INC.                                  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|
| <b>Report No:</b> 05-181-105                                      |                                                                                     | Account No: 5016                                                                                                                |                                                                               |                                       |
| •                                                                 | :                                                                                   | •                                                                                                                               |                                                                               | · · · · · · · · · · · · · · · · · · · |
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361 | KDALE<br>E<br>35361                                                                 | Project Id: MUD WATER                                                                                                           | ATER                                                                          | Submitted by: Pat Dunn                |
|                                                                   |                                                                                     |                                                                                                                                 | er<br>er                                                                      | Date Received: 06/30/2005             |
| Lab Number: 54056                                                 |                                                                                     | SOIL ANALYSIS REPOR                                                                                                             | -20<br>RT                                                                     |                                       |
|                                                                   |                                                                                     |                                                                                                                                 |                                                                               |                                       |
|                                                                   | Detection Limit                                                                     | Analyte                                                                                                                         | Level Found                                                                   | •                                     |
|                                                                   | 50 mg//kg<br>2 mg//kg<br>0.1 %<br>0.1 %<br>1.0 meq/100g<br>Calculated<br>Calculated | Total Kjeldahl Nitrogen<br>NH₄-N<br>Total Organic Carbon<br>Moisture<br>Cation Exchange Capacity<br>C:N Ratio<br>Total Nitrogen | 1096 mg//kg<br>BDL<br>0.81 %<br>1.57 %<br>16.4 meq/100g<br>7:1<br>1102 mg//kg |                                       |
|                                                                   |                                                                                     |                                                                                                                                 |                                                                               |                                       |
| <b>.</b>                                                          |                                                                                     | •                                                                                                                               |                                                                               |                                       |
| BDL - INDICATED THE LEVEL                                         | BDL - INDICATED THE LEVEL FOUND IS BELOW THE ESTABLISHED D                          | D DETECTION LIMIT FOR THAT ANALYTE.                                                                                             | Щ.                                                                            |                                       |
| A & L Western Agricultural Laboratories                           | ıral Laboratories                                                                   |                                                                                                                                 |                                                                               |                                       |
| Robert Butterfield<br>Laboratory Director                         | μ.                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                 |                                                                               |                                       |

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. Twestern Agri. Labs, Inc., 2001 ş

Page 2 of 5

| <b>Report No:</b> 05-181-105                                      |                                                                                                     | Account No: 5016                                                                                                                     |                                                                           |                                                        | AT OR IS S.        |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--------------------|
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361 | CDALE<br>E<br>5361                                                                                  | Project Id: MUD WATER                                                                                                                | VTER -                                                                    | Submitted by: Pat Dunn                                 | •                  |
| Lab Number: 54055                                                 |                                                                                                     | <b>Sampie ID:</b> 63-28-11                                                                                                           |                                                                           | Date Received: 06/30/2005<br>Date Reported: 07/07/2005 | 30/2005<br>07/2005 |
|                                                                   |                                                                                                     | SOIL ANALYSIS REPOR                                                                                                                  |                                                                           |                                                        |                    |
|                                                                   | Detection Limit                                                                                     | Analyte                                                                                                                              | Level Found                                                               |                                                        |                    |
|                                                                   | 50 mg//kg<br>2 mg//kg<br>0.1 %<br>0.1 %<br>1.0 meq/100g<br>Calculated<br>Calculated                 | Total Kjeldahl Nitrogen<br>NH₄-N<br>Total Organic Carbon<br>Moisture<br>Cation Exchange Capacity<br>C:N Ratio<br>Total Nitrogen      | 719 mg/kg<br>BDL<br>0.59 %<br>2.31 %<br>14.8 meq/100g<br>8:1<br>721 mg/kg |                                                        |                    |
|                                                                   |                                                                                                     |                                                                                                                                      |                                                                           |                                                        |                    |
|                                                                   |                                                                                                     |                                                                                                                                      | ,<br>,                                                                    |                                                        | •                  |
| •                                                                 |                                                                                                     |                                                                                                                                      |                                                                           |                                                        |                    |
| CATED THE LEVEL R<br>estern Agricultu                             | BDL - INDICATED THE LEVEL FOUND IS BELOW THE ESTABLISHED<br>A & L Western Agricultural Laboratories | BDL - INDICATED THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE<br>A & L Western Agricultural Laboratories | ų                                                                         |                                                        | :                  |
| Robert Butterfield                                                |                                                                                                     |                                                                                                                                      |                                                                           |                                                        |                    |

| 4080<br>Submitted by: Pat Dunn<br>Date Reported:<br>Date Reported:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>5351 • (209) 529-4</b><br><b>5351 • (209) 529-4</b><br><b>5351 • (209) 529-4</b><br><b>5351 • (209) 529-4</b><br><b>610</b><br><b>EPA SW846-6010</b><br><b>EPA SW846-6010</b><br><b></b> |   |
| A & L WESTERN AGRICULTURAL LABORATORIES, INC.       1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080       Jake       Account No: 5016       Pale       Pale       Pale       Pale       Bold       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • |
| RN AGRICUL<br>enue, Suite 1 • Mc<br>Accor<br>Accor<br>Bra<br>Accor<br>Acsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Zinc<br>Selenium<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - |
| A & L WESTERN A<br>1311 Woodland Avenue,<br>361<br>361<br>0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| A & A & 131' 131' 131' 131' 131' 131' 131' 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |

BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE.

۰, ۲

# A & L Western Agricultural Laboratories

Robert Butterfield Laboratory Director

Page 5 of 5 Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

|                                                                   | A & L WESTERN /          |                                         | TURAL LAB                                      | LABORATORIES, INC.                                                   |                                           |
|-------------------------------------------------------------------|--------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|
| Report No: 05-181-105                                             |                          |                                         |                                                |                                                                      |                                           |
|                                                                   |                          | Account                                 | Account No: 5016                               |                                                                      | Administration - Doministration - Monthal |
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>0AKDALE, CA 95361 |                          | Proj                                    | Project ID: MUD WATER                          |                                                                      | Submitted by: Pat Dunn                    |
| · .                                                               |                          | •                                       |                                                |                                                                      | <b>Date Received:</b> 06/30/2005          |
| Lab Number: 54058                                                 |                          | 503 METALS A                            | <b>Sample ID: 63-25-15<br/>ANALYSIS RHPO</b> 1 | لم<br>لم                                                             | Date Reported: 07/22/2005                 |
| Det                                                               | Detection Limit<br>mg/kg | Analyte                                 | Level Found<br>mg/kg                           | Method Code                                                          | ·<br>·<br>·                               |
| 0.05                                                              | ທ <del>–</del> ທ ະ       | Arsenic<br>Cadmium<br>Chromium          | 18<br>2.5<br>13.6                              | EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010 |                                           |
|                                                                   | 0.1<br>0.05<br>1.0       | Copper<br>Lead<br>Mercury<br>Molvbdenum | 13.3<br>BDL<br>BDL                             |                                                                      |                                           |
| 0.1                                                               | - <u>1</u> 0 -           | Nickel<br>Selenium<br>Zinc              | 5.9<br>BDL<br>32.4                             | EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010                   | •                                         |
|                                                                   |                          |                                         | · · · · · · · · · · · · · · · · · · ·          |                                                                      |                                           |
| •                                                                 |                          |                                         |                                                |                                                                      |                                           |
| BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED          | SELOW THE ESTABU         |                                         | DETECTION LIMIT FOR THAT ANALYTE.              |                                                                      |                                           |
| A & L. Western Agricultural Laboratories                          | atories                  |                                         |                                                |                                                                      |                                           |
| Robert Butterfield<br>Laboratory Director                         | •<br>•<br>•              |                                         |                                                |                                                                      |                                           |

Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

.

`

Page 4 of 5

| · · · ·                                                                                    |                                 | Accourt                                                     | Account No: 5016                        | •                                                                                                                           | or a construction of the c |                          |
|--------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>OAKDALE, CA 95361                          | DALE<br>3361                    | Proj                                                        | Project ID: MUD WATER                   | · · ·                                                                                                                       | Submitted by: Pat Dunn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Lab Number: 54057                                                                          | •                               | ŭ                                                           | <b>Sample ID:</b> 64-31-40              | ,<br>,                                                                                                                      | <b>Date Received:</b> 06/30/2005<br><b>Date Reported:</b> 07/22/2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06/30/2005<br>07/22/2005 |
|                                                                                            | Detection Limit<br>mg/kg        | <b>503 METALS A</b><br>Analyte                              | S ANALYSISIREPO<br>Level Found<br>mg/kg | Method Code                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| · · · · · · · · · · · · · · · · · · ·                                                      | 0.5<br>0.1<br>0.1               | Arsenic<br>Cadmium<br>Chromium<br>Copper                    | 1.5<br>2.6<br>4.7                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| · · ·                                                                                      | 1.2<br>0.1<br>0.1<br>0.5<br>2.5 | Lead<br>Mercury<br>Molybdenum<br>Nickel<br>Selenium<br>Zinc | 16.9<br>BDL<br>8DL<br>8DL<br>10 0       | EPA SW846-6010<br>EPA SW846-7471A<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                                                                                            |                                 | 1                                                           | 0                                       |                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
|                                                                                            |                                 |                                                             | · · · · · · · · · · · · · · · · · · ·   | ,<br>,                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE. | UND IS BELOW THE ESTABL         | ISHED DETECTION LIMIT                                       | FOR THAT ANALYTE.                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| A & L Western Agricultural Laboratories                                                    | Laboratories                    |                                                             |                                         |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Robert Butterfield<br>Laboratory Director                                                  |                                 | ·                                                           | •                                       |                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |

•
Report No: 05-181-105

Account No: 5016

Project ID: MUD WATER

Submitted by: Pat Dunn

Send to: CON AGRA-OAKDALE 554 S. YOSEMITE 0AKDALE, CA 95361 .

Lab Number: 54056

Sample ID: 63-28-26 503 METALS ANALYSIS REPORT

Date Received: 06/30/2005 Date Reported: 07/22/2005

| •                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method Code              | EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010<br>EPA SW846-6010                                                                                                                                                                                                                                                                                 |
| Level Found M<br>mg/kg   | 2.1<br>2.5<br>13.3<br>15.7<br>15.7<br>15.7<br>8DL<br>2.2<br>8DL<br>26.0                                                                                                                                                                                                                                                                                                                                                                                          |
| Analyte                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Detection Limit<br>mg/kg | 0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0.5<br>0.1<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>0<br>0.5<br>5<br>0.0<br>5<br>0.5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>0.0<br>5<br>5<br>5<br>0.0<br>5<br>5<br>5<br>0.0<br>5<br>5<br>5<br>0.0<br>5<br>5<br>5<br>5 |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

BDL  $^{-}$  indicates the level found is below the established detection limit for that analyte.  $\downarrow$ 

A & L Western Agricultural Laboratories

1

Robert Butterfield Laboratory Director Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

Page 2 of 5

| 1311 V<br>Report No: 05-181-105                                   | 1311 Woodland Avenue, Suite 1 • Modesto, California 95351 • (209) 529-4080<br>Account No: 5016 | (09) 529-4080                                          |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Send to: CON AGRA-OAKDALE<br>554 S. YOSEMITE<br>0AKDALE, CA 95361 | Project ID: MUD WATER                                                                          | Submitted by: Pat Dunn                                 |
|                                                                   |                                                                                                |                                                        |
| Lab Number: 54055                                                 | Sample ID: 63-28-11                                                                            | Date Received: 06/30/2005<br>Date Reported: 07/22/2005 |

| •<br>•<br>•<br>•<br>• | Detection Limit<br>mg/kg | Analyte    | Level Found<br>mg/kg | Method Code     |   |
|-----------------------|--------------------------|------------|----------------------|-----------------|---|
|                       | 0.5                      | Arsenic    | 1.9                  | EPA SW846-6010  |   |
|                       | 0.1                      | Cadmium    | 2.4                  | EPA SW846-6010  |   |
|                       | 0.5                      | Chromium   | 12.6                 | EPA SW846-6010  |   |
|                       | 0.1                      | Copper     | 5.7                  | EPA SW846-6010  |   |
| -                     | 1,2                      | Lead       | 15.4                 | EPA SW846-6010  |   |
|                       | 0.05                     | Mercury    | BDL                  | EPA SW846-7471A |   |
|                       | 1.0                      | Molybdenum | BDL                  | EPA SW846-6010  |   |
|                       | 0.1                      | Nickel     | 3.1                  | EPA SW846-6010  |   |
|                       | 5.5                      | Selenium   | BDL                  | EPA SW846-6010  | • |
|                       | 0.1                      | Zinc       | 22.6                 | EPA SW846-6010  |   |
|                       |                          |            |                      |                 |   |

BDL - INDICATES THE LEVEL FOUND IS BELOW THE ESTABLISHED DETECTION LIMIT FOR THAT ANALYTE.

## A & L Western Agricultural Laboratories

ħ M-2J

Robert Butterfield Laboratory Director

Page 1 of 5 Our reports and letters are for the exclusive and confidential use of our clients, and may not be reproduced in whole or in part, nor may any reference be made to the work, the results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001 results, or the company in any advertising, news release, or other public announcements without obtaining our prior written authorization. © A & L Western Agri. Labs, Inc., 2001

| ConAgra Foods <sup>•</sup>                | oods                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                             | Purcha                           | Purchase Requisition Form                          | isition              | Form                  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------|-----------------------|
| Billing Address                           |                                                                                                                         | This is Not A Purchase Orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | urchase Order                                                                                                   |                                  |                                                    |                      |                       |
| ConAgra Foods                             | ods                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                               |                                  | PURCHASING USE ONLY -<br>MP2 Purchase Order Number | onLY -<br>er Number: |                       |
| oo4 o. rosemite Ave.<br>Oakdale, Ca 95361 | піте Аve.<br>95361                                                                                                      | 554 S. Yosemite Ave.<br>Oakdale. Ca 95361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | ¥.                               |                                                    | <b>D2</b> 07         |                       |
| Vendor Information:                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |                                                    | 1.00                 |                       |
| Name A 8/1                                | L Western Agriculte                                                                                                     | Ialitabs Inc. States and the states of the s |                                                                                                                 |                                  |                                                    |                      |                       |
| •                                         | 1311 Moodland Ave #2                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |                                                    |                      |                       |
| City Modesto                              | sto                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State CA                                                                                                        |                                  |                                                    |                      | •                     |
| Zip Code 95351                            |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |                                                    | •                    |                       |
| Contact Name                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone 2                                                                                                         | 209-529-4080                     | Fax                                                | Fax 200-520-4736     |                       |
| Suggested Source                          |                                                                                                                         | Date Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | Date Written                     |                                                    |                      |                       |
| Confirmine                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | CON7/CE/Q                        |                                                    | ·                    |                       |
| بي                                        | lerms<br>1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 1830: 18 | Taxable Resale No.<br>Lives XII No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | Freight Terms<br>Prepaid Collect | Ppd. & Add.                                        |                      | FOB Point             |
| Via                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                               | Date Placed                      | Promised Delivery                                  |                      |                       |
| te<br>                                    |                                                                                                                         | Lori Delih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | 8/1/2005                         | Complete                                           |                      |                       |
| Item Ref. Quantity UOM                    | -                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | Unit Price                       | Extended \$                                        | Account              | Accounting Data       |
|                                           | Off Site Soil Testi                                                                                                     | Off-Site Soil Testingrin supports MCD Waiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                                  | <b>.</b>                                           | For Non Pro          | For Non Prod Supplies |
|                                           | Combination Fedility/Salinity Ekg                                                                                       | lity/Salinity-Ekg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | \$ 46.00                         | 330.00                                             | Op. Unit 03317       | 7                     |
| 3<br>5 ea                                 | Nitrogen TKN                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | \$ 20:00                         | S                                                  | Account 53601        | 5                     |
|                                           | Mitrogen Ammonia                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | \$ 12.00                         | \$                                                 |                      |                       |
|                                           | Total Organic Carbon                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 30:00                            |                                                    |                      |                       |
|                                           | Soil Moisture                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | \$ 008                           |                                                    | Resp.                | 00                    |
| (Q)                                       | Total Cation Exchange Capacity                                                                                          | ange Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | S 30.00                          |                                                    | 0                    | Project               |
| -                                         | C.N.Ratio with soil                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | 10 A A A A                                         | CIR                  |                       |
| 9<br>5<br>63                              | EPA 503 Metals Pkg                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | になるとないない。                                          | ۵.                   |                       |
|                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |                                                    | ·                    |                       |
| <u></u>                                   |                                                                                                                         | 「「「「「「「」」」、「「「」」、「「」」、「」」、「」、「」、「」、「」、「」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                  |                                                    |                      |                       |
|                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  |                                                    |                      |                       |
| 131                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                  | S. A. S.       | Please H             | Please Route to       |
| Ś                                         |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Taxes                            |                                                    | Aydee C              | Aydee Chavez in       |
| $\zeta$                                   | 3                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | Freight                          |                                                    | Parch                | Eurchasing            |
| Kequestor                                 |                                                                                                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ;                                                                                                               | TOTAL                            | 3,530:09                                           |                      | D.                    |
|                                           | X                                                                                                                       | interfer .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                               |                                  |                                                    |                      |                       |
| Supervisor                                |                                                                                                                         | Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oller                                                                                                           | Plant                            | PlantManager                                       |                      |                       |
| š.                                        |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A DOUD AND A | \$5,001 \$2                      | 55,001+ \$20,000 fimit                             |                      |                       |
|                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | •                                |                                                    |                      |                       |

2

8/15/2005 1:50 PM

.

## **APPENDIX C**

## DAILY MUD APPLICATION FORM AND APN MAPS



## DAILY RINSE MUD AND AERATED POND MUD APPLICATION LOG

| Date:                                                                                    |     |    |    |   |
|------------------------------------------------------------------------------------------|-----|----|----|---|
| <u>Type of Mud:</u>                                                                      |     |    |    |   |
| Hauler:                                                                                  |     |    |    |   |
| Estimated Volume in Cubic Yards:                                                         |     |    |    |   |
| Daily pH of Fluid/Mud Mixture Hauled:<br>(6.0-8.5 for Aerated Mud, 3.5-12 for Rinse Mud) |     |    |    |   |
| <u>Time of Hauling:</u>                                                                  |     |    |    |   |
| Storage on Site:                                                                         | Yes | or | No |   |
| Time of Application:                                                                     |     |    |    |   |
| Method of Application:                                                                   |     |    |    |   |
| Esitmated Volume Applied:                                                                |     |    |    | · |
| Location and Surface Area of Application:<br>(Include name and address of field)         |     |    |    |   |
| <u>Proximity to Surface Water, Creeks, Streams</u><br>and Wetlands                       |     |    |    |   |
| Chemical Sampling Completed                                                              |     |    |    |   |
| (Date and time last collected)                                                           |     |    |    |   |
| Day After Application Observations                                                       |     |    |    |   |
| Ponded Water                                                                             | Yes | or | No |   |
| Nuiscence Flies, Insects                                                                 | Yes | or | No |   |
| Corrective Actions Required                                                              | Yes | or | No |   |
| Explanation if Yes                                                                       |     |    |    |   |
| <u>Other Notes:</u>                                                                      |     |    |    |   |
|                                                                                          |     |    |    |   |

Signature:\_\_\_\_\_

.

















