# Stanislaus County Water Advisory Committee

# 100 Day Action Plan Thresholds & Monitoring Elements

April 10, 2014









Undifferentiated Marine Deposits

5



Figure 6 - East-West Cross-Section Showing Hydrogeologic Units within the Groundwater Basin



#### **Thresholds**

- Geographic Location
  - May be different for the Groundwater Management Planning (GMP) Areas
  - May be different for each of the four different aquifer systems
- Management Objectives
  - Compile from existing GMP's
  - Develop new objectives consistent with WAC recommendations mining prevention level

#### **Thresholds**

- Examples of existing Management Objectives:
  - Review of existing Groundwater Management Plans and Objectives
    - Update existing plans to bring into compliance with existing statutes and directives
    - Update Groundwater Management Plans <u>and adopt for areas within the</u> <u>County that are not covered by another agency or plan.</u>
  - Maintain groundwater levels
    - Recognize that groundwater levels fluctuate over wet/dry cycles
    - Review long-term trends and use statistical analysis methods as an evaluation and management tool
  - Control degradation of groundwater quality and movement of contaminants
  - Protect against potential inelastic land surface subsidence, where of concern
  - Groundwater monitoring and assessment
    - Water Quality and Quantity (water level & extraction)

#### **Thresholds**

- Examples of existing Management Objectives:
  - Evaluate feasible water conservation measures
  - Evaluate ways to maximize existing supplies
    - Feasibility of conservation measures & water supply impacts
    - Facilitate infrastructure to enhance conjunctive use operations
    - Evaluate stormwater capture and potential for groundwater recharge
    - Wastewater reuse potential as secondary supply source
  - Foster coordination and cooperation across institutions
  - Education and Outreach
  - Refinement of existing groundwater mining and export ordinance as determined practical and necessary in areas of concern
  - Public Education and Outreach

#### **Groundwater Monitoring**

- Water Level Measurement and Reporting
- Use existing CASGEM entities (expand coverage)
  - > Benefits of monitoring groundwater levels:
    - Determine annual and long-term changes of groundwater in storage
    - Determine recharge rates
    - Determine direction and gradient of groundwater flow and circulation
    - Understand the response of the aquifer system(s) to stresses such as groundwater withdrawals
    - Gain insight for improved well construction (screening interval) and where to set pump intake bowls for efficient extraction







Confined Confining Aquifer Zone



#### **Groundwater Monitoring**

- Withdrawal Data (Extraction)
  - ➤ Benefits of monitoring and collecting groundwater pumping information:
    - Determine annual and long-term changes of groundwater in storage
    - Understand the hydrodynamic response of the aquifer system(s) to inputs and outputs
    - Improve groundwater modeling forecasting ability and reliability
    - Aggregate <u>monthly</u> data to no smaller than 40 acre blocks (uniformity with groundwater modeling)
      - Exemption for smaller users such as domestic and small agricultural similar to Groundwater Ordinance



Range 10 East

| _             |
|---------------|
| $\pm$         |
| $\supset$     |
| 0             |
| Š             |
| $\mathcal{C}$ |
| d             |
| $\equiv$      |
| nsl           |
| $\subseteq$   |
| 3             |
| Ō             |
| _             |



Well No. 3S10E36ab







Section 36

#### **NEXT STEPS**

- April 30<sup>th</sup> @ 9:00 AM Alliance Center
  - Complete Thresholds & Monitoring; including recommendations for consideration of submittal to BOS
  - Review Governance, Funding & Enforcement elements
  - Review Groundwater Ordinance provisions and process for implementation

### Eastside Water District Established 1983

A Presentation to the Stanislaus County Water Advisory Committee on Thursday, April 10, 2014 at 6:00 pm

By: Kevin Kauffman, PE

## Briefing Objectives

- Generally explain EWD's efforts to address groundwater overdraft over its 30-years
- 2. Describe progress that has made to date
- 3. Summarize how EWD intends to continue to address groundwater overdraft
- 4. Respond to any questions of the WAC on behalf of EWD

### 2003 EWD Boundary Map



# Areas Recently Annexed to EWD



## EWD's Past Investigations & Efforts

- Water Conservation water demands reduced by half but GW recharge benefit from surface water irrigation also reduced
- GW Recharge methods studied = natural, direct, & in-lieu
- Pilot Testing of Direct Method (2-sites)
- Sphere of Influence water purchases for EWD customer irrigation (in-lieu)
- Surface Water for In-Lieu or Direct GW recharge scarce resulting in minimal progress

## 2013 Data – Two Methods Used



# East Avenue Pilot Project – Redesigned With Ridges – Taken on 8/29/13



#### Pilot Study's Potential Next Steps

- Winter of 2013-14 not productive due to no local storm water runoff flow
- Planned diversion of 2014-2015 storm water runoff flow to existing pilot project
- Deep Basins (similar to pilot) adjacent to TID canal inlets; or
- Multiple 'dry-wells' as alternative to Basins
- Secure surface water for EWD customers (in-lieu use)
- Local storm water runoff (diffused surface water) is not subject to appropriation, and is not part of any riparian right; and can be used for GW recharge

## 2003 GW Recharge Planning Study





Figure C-1





PA-1 serves area A HYDROLOGIC ELEMENT DIAGRAM





PA-2 serves area A HYDROLOGIC ELEMENT DIAGRAM





PA-3 serves area C HYDROLOGIC ELEMENT DIAGRAM





PA-4 serves area D HYDROLOGIC ELEMENT DIAGRAM





PA-5 serves area D HYDROLOGIC ELEMENT DIAGRAM





PA-6 serves area E HYDROLOGIC ELEMENT DIAGRAM







PA-9 serves area G HYDROLOGIC ELEMENT DIAGRAM





PA-10 serves areas H & D HYDROLOGIC ELEMENT DIAGRAM





PA-11 serves area H & D HYDROLOGIC ELEMENT DIAGRAM





PA-12 serves area I HYDROLOGIC ELEMENT DIAGRAM





PA-13 serves areas I & B HYDROLOGIC ELEMENT DIAGRAM





PA-14 serves areas H, D, I, & B HYDROLOGIC ELEMENT DIAGRAM





PA-15 serves areas H, D, I & B HYDROLOGIC ELEMENT DIAGRAM





Figure n-n

#### Conclusions

- EWD will continue to manage its portion of the Turlock Basin, but without a surface water supply, expectation are limited
- TID and Merced ID have recognized value of cooperating with EWD on GW recharge projects, so hope 'springs'
- The Future Looks Bright! This cooperation is expected to lead to a long-term sustainable water supply for all residents depending on the Turlock GW Basin