

Groundwater Recharge Assessment Tool GRAT[™]

Daniel Mountjoy, Sustainable Conservation Glen Low, Earth Genome

Stanislaus County Water Advisory Committee January 27, 2021

Recharge Options

Uncropped district land:

- 1. Unlined canals
- 2. Dedicated Recharge Basins
- 3. Dry wells, Active wells

Uncropped private land:

- 1. Fallow fields
- 2. Transitioning fields
- 3. Pasture/grass land
- 4. Small privately owned basins
- 5. River floodplains

Active cropland

- 1. Annual crops (winter fallow)
- 2. Permanent crops (alfalfa, grapes, orchards: stone fruit, nut crops)

Monitoring Sites: Documenting what is possible

Ę

Adoption of On-Farm Recharge Madera Irrigation District Recharge Program: 2017 - 2019

	Winter Program		Fall Program	
	2017	2019	2017	2019
Number of Growers	104	322	3	55
Number of APNs	223	296	7	57
Total Acres	18,715	39,760	278	6,190
Total Acre-Feet Applied	5,900	17,200	225	2,650
Total Acre-Feet Recharged (Applied – Etc)	4,000	~9,000	171	1,700

1. Water Available for Recharge with Climate Change

Ē

RMC 2015

2. District Conveyance Capacity

F

3. Recharge Suitability Indexes

Weighted indexes of slope, soil type, clay layers, underlying geology, depth to groundwater

UC Davis SAGBI

Land IQ Recharge Suitability Index

4. Crop Compatibility Calendar

- Weekly capacity of crops to receive water in excess of crop demand
- DWR IDC model used for dry down period by soil type
- Best available data based on farmer and field agronomist experience
- Available for grapes, alfalfa, walnuts, almonds, pistachios, fallow land

5. Cost Comparison of Recharge Options

On-farm

Dedicated basin

\$40 - 107/AF

\$124-250/AF

Groundwater Recharge Assessment Tool - GRAT™

- 1. Where is recharge best done? When?
- **2. How much** surface water can we capture?
- 3. What would it **cost**?
- 4. How much of our groundwater overdraft can be addressed by increasing recharge?

How

GRATTM

Works

Groundwater Recharge Assessment Tool (GRAT) What is it?

GRAT = decision support tool that enables
Groundwater Sustainability Agencies (GSAs)
to identify and prioritize potential groundwater replenishment
options to achieve sustainable groundwater supplies.

What will the tool do for Water Districts and GSAs?

- Quickly generate and compare different gw recharge scenarios
- Match available water with recharge potential based on soils, geologies, and crops
- Provide insight into how you can meet SGMA planning requirements
- Identify lowest cost strategies to capture available flood flows
- Compare cost effectiveness of capturing limited surface water supply across the entire subbasin
- Estimate intra-district cost allocation for greater basin benefit

Without further recharge, GSAs and Water Districts in CA may need to limit groundwater pumping, leading to \$B's losses per year in lost field productivity

Ę

Potential value of GRAT at Subbasin Scale

Turlock Subbasin

East San Joaquin Subbasin

- 1. Best options? What recharge scenarios are available to address areas of greatest aquifer depletion?
- 2. Farmer engagement? What is the latest science on applying recharge water on fields when water is available? Right balance of risk and rewards?
- **3. SGMA/GSP**? How might on-farm recharge, fallow recharge, basin recharge, etc. help address the groundwater deficit in the subbasin? Help address GSP needs per SGMA?
- 4. **Common view**? Create a shared common view, using best available data and science, on what groundwater opportunities exist across multiple jurisdictions?

Cloud-based 24/7 Access

Juárez

Individual fields ranked by Recharge Potential

Ę

Scenarios: User defined water availability

Scenarios: Recharge Type

GRAT Selects Sites: Recharge Quantities and Costs

Results: Acreage Used by Crop and Water Year and remaining acreage potential

Ē

Results: Net Groundwater Change

Results: Net Groundwater Change with pumping restrictions

Results: Unused Water Available for Recharge

Results: Investment Cost by Year and Total

Groundwater Recharge Assessment Tool

SCENARIOS CRITERIA \odot SELECT RESULTS 8M 4 Investment needed (\$) OUTPUTS 4M2M 0

Graphs

GW and Recharge Recharge by Type On-Farm Recharge by Crop Unused Water Available for Recharge Financials

Total 20 Year Investment Needed: \$116,854,390

Fallow Recharge

Highcharts.com

GRAT supports the GSP implementation process

If multiple districts are running GRAT, you can:

- compare relative cost effectiveness of capturing limited surface water supply in different locations
- Estimate intra-district cost allocation for greater basin benefit

The Modesto Subbasin and STRGBA GSA

Where the water went

Recharge Benefits Provide GRAT output to Groundwater Model

Wettest year scenario (1901)

GRAT supports ongoing operations

- Determine farmland compatibility to take extra water at specific times of year
- Prioritize outreach to encourage farmers to take anticipated flood flows
- Estimate costs to incentivize farmers to take water

For further information

Groundwaterrecharge.org

Daniel Mountjoy dmountjoy@suscon.org

Glen Low glen@earthgenome.org

Align recharge need with site suitability and water availability

