Chapter Four

NOISE ELEMENT

INTRODUCTION

The purpose of the Noise Element is to limit the exposure of the community to excessive noise levels. Local governments are required to analyze and quantify noise levels and the extent of noise exposure through field measurements or noise modeling, and implement measures and possible solutions to existing and foreseeable noise problems (California Governor’s Office of Planning & Research, General Plan Guidelines, 2003). California Government Code Section 65302(f) requires that current and projected noise levels be analyzed and quantified for highways, freeways, primary arterials, and major local streets. Noise contours for current and projected conditions within the community are required to be prepared in terms of either the Community Noise Equivalent Level (CNEL) or the Day-Night Average Level (L_{dn}), which are descriptors of total noise exposure at a given location for an annual average day. CNEL and L_{dn} are generally considered to be equivalent descriptors of the community noise environment within plus or minus 1.0 dBA. An explanation of the acoustical terminology used in this document is included below.

It is intended that the noise exposure information developed for the Noise Element be incorporated into the General Plan to serve as a basis for achieving Land Use compatibility within the unincorporated areas of the County. It is also intended that the noise exposure information developed for the Noise Element be used to provide baseline levels for use in the development and enforcement of a local noise control ordinance to address noise levels generated by non-preempted noise sources within the County.

According to the Noise Element Requirements and Noise Element Guidelines, the following major noise sources should be considered in the preparation of a Noise Element:

1. Highways and freeways
2. Principal Arterials, Minor Arterials, or Major Collectors
3. Passenger and freight online railroad operations and ground rapid transit systems
4. Commercial, general aviation, heliport, helistop, and military airport operations, aircraft over flights, jet engine test standards, and all other ground facilities, and maintenance functions related to airport operation
5. Local industrial plants, including, but not limited to, railroad classification yards
6. Other ground stationary sources identified by local agencies as contributing to the community noise environment

Noise-sensitive areas to be considered in the Noise Element should include areas containing the following noise sensitive land uses:

1. Schools
2. Hospitals
3. Convalescent homes
4. Churches
5. Sensitive wildlife habitat, including the habitat of rare, threatened, or endangered species
6. Other uses deemed noise sensitive by the local jurisdiction
Relationship to Other Elements of the General Plan

The Noise Element is most related to the Land Use and Circulation Elements of the General Plan. Its relationship to the Land Use Element is direct in that the implementation of either element has the potential to result in the creation or elimination of a noise conflict with respect to differing land uses. The Land Use Element must be consistent with the Noise Element in discouraging the development of incompatible adjacent land uses to prevent impacts upon noise sensitive uses and to prevent encroachment upon existing noise-generating facilities.

The Circulation Element is linked to the Noise Element in that traffic routing and volume directly affect community noise exposure. For example, increased traffic volume may produce increased noise in a residential area so that noise control measures are required to provide an acceptable noise environment. Similarly, rerouting traffic from a noise-impacted neighborhood may provide significant noise relief to that area. Implementation of the Circulation Element should include consideration of potential noise effects.

Noise and Its Effects on People

A Technical Reference Document, prepared in 2005, that provides a discussion of the fundamentals of noise assessment, the effects of noise on people and criteria for acceptable noise exposure, is provided in Appendix IV-A of this element. It is intended that the Technical Reference Document serve as a reference for Stanislaus County when reviewing documents or proposals which refer to the measurement and effects of noise within the County.

Acoustical Terminology

“ Ambient noise levels” means the composite of noise from all sources near and far. In this context it represents the normal or existing level of environmental noise at a given location for a specific time of the day or night.

“A-weighted sound level” means the sound level in decibels as measured with a sound level meter using the A-weighted network (scale) at slow meter response. The unit of measurement is referred to herein as dBA.

“CNEL” means Community Noise Equivalent Level. The average equivalent A-weighted sound level during a 24-hour day, obtained after addition of five decibels to sound levels in the evening from 7:00 p.m. to 10:00 p.m. and after addition of ten decibels to sound levels in the night before 7:00 a.m. and after 10:00 p.m.

“Decibel, dB” means a unit for describing the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micropascals (20 micronewtons per square meter).

“Equivalent Energy Level, L_{eq}” means the sound level corresponding to a steady state sound level containing the same total energy as time varying signal over a given sample period. L_{eq} is typically computed over 1, 8, and 24-hour sample periods.

“Impulsive Noise” means a noise of short duration, usually less than one second, with an abrupt onset and rapid decay.

“L_{max}” means the maximum A-weighted noise level recorded during a noise event.
"Day/Night Average Sound Level, L_{dn}" is a 24-hour measure of the cumulative noise exposure in a community, with a 10 dBA penalty added to nocturnal (10:00 p.m. - 7:00 a.m.) noise levels.

"Noise Exposure Contours" are Lines drawn about a noise source indicating constant energy levels of noise exposure. CNEL and L_{dn} are the descriptors utilized herein to describe community exposure to noise.

"Preempted Noise Source" means a noise source which cannot be regulated by the local jurisdiction due to existing state or federal regulations already applying to the source. Examples of such sources are vehicles operated on public roadways, railroad trains, and aircraft.

"Pure Tone Noise" means any noise which is distinctly audible as a single pitch (frequency) or set of pitches. For the purposes of this document, a pure tone shall exist if the one-third octave band sound pressure level in the band with the tone exceeds the arithmetic average of the sound pressure levels of the two contiguous one-third octave bands by 5 dB for center frequencies of 500 Hz and above and by 8 dB for center frequencies between 160 and 400 Hz and 15 dB for center frequencies less than or equal to 125 Hz.
EXISTING AND FUTURE NOISE ENVIRONMENT

Overview of Sources

There are a number of potentially significant sources of community noise within Stanislaus County, which have been identified and studied. These sources include traffic on state highways and major County roadways, railroad operations, airport operations, and industrial activities. Specific noise sources selected for study are described in the 2005 Technical Reference Document, provided in Appendix IV-A of this element.

Noise Exposure Maps

The California Department of Transportation (Caltrans) Noise Prediction Model LeqV2 was used in conjunction with field noise level measurements to develop L_{dn} contours for the state highways and major county roadways within the unincorporated areas of Stanislaus County. Annual average daily traffic volumes (AADT) and truck mixes for existing (2000) and future (2030) conditions were obtained from Caltrans and the Stanislaus County Department of Public Works. CNEL contours for operations at the Oakdale Municipal Airport and the Modesto City/County Airport were derived from existing Airport Master Plan reports.

Noise exposure contours for major transportation sources of noise within the unincorporated areas of Stanislaus County were identified within Appendix IV-A (Existing Noise Sources) and B (Future Noise Sources) of the 2005 Technical Reference Document. It should be noted that these contours were generally based upon annual average conditions, and were not intended to be site-specific where local topography, vegetation, or intervening structures may significantly affect noise exposure at a particular location. The noise contour maps were prepared to assist Stanislaus County with the implementation of the Noise Element through the project review and long range planning processes.

This element, as updated in 2016, incorporates the 2005 Technical Reference Document as a source for existing noise measurements; including a summary of long-term and short-term measurements and noise contour distances for major railroad. As part of the 2016 update, Figure IV-1: Predicted Year 2035 traffic noise levels has been incorporated. Updated airport noise contours for the Modesto City/County and the Oakdale Municipal airports are available in the Airport Land Use Compatibility Plan adopted by the Stanislaus County Airport Land Use Commission.
THIS PAGE INTENTIONALLY LEFT BLANK
COMMUNITY NOISE SURVEY

The 2005 Technical Reference Document (Appendix IV-A), incorporates the 2004 community noise survey, conducted to document noise exposure in areas of the County containing noise sensitive land uses. The following noise sensitive land uses have been identified within Stanislaus County:

2. Schools
3. Long-term care medical facilities, such as hospitals, nursing homes, etc.

As part of the community noise survey, noise monitoring sites were selected to be representative of typical conditions in the unincorporated areas of the County where noise sensitive land uses are located. A combination of short-term and long-term (24-hour) noise monitoring was used to document existing noise levels at these locations during July and August of 2004. A total of 30 monitoring sites were selected, including 20 long-term noise measurements and 10 short-term noise measurements.

Long-term noise measurements were conducted to show the daily trend in noise levels throughout a 24-hour to 48-hour period. Noise level data collected during continuous monitoring included the Leq, maximum noise level and the statistical distribution of noise levels for each hour of the sample period.

Short-term noise measurements were conducted in simultaneous intervals with traffic volume and speed observations. Ldn noise levels at each receiver were calculated by adjusting for differences in traffic conditions during measurements and the loudest existing hourly traffic conditions (based on the existing AADT traffic volumes). The data collected during the short-term sampling program included the Leq, maximum noise level, minimum noise level, and a description of major sources of noise which were audible. Long and short-term measured noise level data collected during the community noise survey are summarized in the 2005 Technical Reference Document.

The quietest areas of unincorporated Stanislaus County are those which are removed from major transportation-related noise sources and local industrial or other stationary noise sources. Good examples of these quiet areas are rural areas such as Hickman, Valley Home, and La Grange. The noisier areas surveyed were those located near state highways (Salida), major county roadways (Westport and Shackelford), or railroads (Empire). Typically, maximum noise levels observed during the survey were generated by local automobile traffic or heavy trucks. Other sources of maximum noise levels included occasional aircraft over flights and, in some areas, railroad operations (especially horns). Background noise levels in the absence of the above-described sources were caused by distant traffic, wind in the trees, running water, birds, and distant industrial or other stationary noise sources.
THIS PAGE INTENTIONALLY LEFT BLANK
LAND USE COMPATIBILITY GUIDELINES

Figure IV-2 is provided as reference concerning the sensitivity of different land uses to their noise environment. It is intended to illustrate the range of noise levels which will allow the full range of activities normally associated with a given land use. For example, exterior noise levels in the range of 50-60 L_{dn} (or CNEL) are generally considered acceptable for residential land uses, since these levels will usually allow normal outdoor and indoor activities such as sleep and communications to occur without interruption. Industrial facilities, however, can be relatively insensitive to noise and may generally be located in a noise environment of up to 75 L_{dn} (or CNEL) without significant adverse effects. Specific noise compatibility criteria in terms of L_{dn} or CNEL for residential and noise sensitive land uses in Stanislaus County are defined in Section 5.0.

TABLE IV-1: NOISE CONTOUR DISTANCES FOR MAJOR RAILROAD LINES (2004)

<table>
<thead>
<tr>
<th>Railroad Description*</th>
<th>Distance from Centerline from Roadway (in feet) Based on Traffic Noise Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75-L_{dn}</td>
</tr>
<tr>
<td>Union Pacific Railroad (UPRR)</td>
<td>70</td>
</tr>
<tr>
<td>Burlington Northern and Santa Fe (BN & SF) Railway</td>
<td>100</td>
</tr>
<tr>
<td>Sierra Railroad</td>
<td>**</td>
</tr>
<tr>
<td>Tidewater Southern Railroad</td>
<td>**</td>
</tr>
</tbody>
</table>

*Noise contour distances for the Modesto and Empire Traction Company Railroad were not calculated due to a lack of specific information regarding train movements along this track.

**Distances of less than 50 feet are not included in this table.
Figure IV-1
Predicted Year 2035 Traffic Noise Levels (Ldn, 75 feet from Roadway Centerline)
FIGURE IV-2: NORMALLY ACCEPTED COMMUNITY NOISE ENVIRONMENTS

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Exterior Noise Exposure Ldn or CNEL, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td>*Residential – Low Density Single Family, Duplex, and Mobile Homes</td>
<td></td>
</tr>
<tr>
<td>*Multi-Family Residential</td>
<td></td>
</tr>
<tr>
<td>Hotels and Motels</td>
<td></td>
</tr>
<tr>
<td>Schools, Libraries, Museums, Hospitals, Personal Care, Meeting Halls, Churches</td>
<td></td>
</tr>
<tr>
<td>Auditoriums, Concert Halls, and Amphitheaters</td>
<td></td>
</tr>
<tr>
<td>Sports Arena and Outdoor Spectator Sports</td>
<td></td>
</tr>
<tr>
<td>Playgrounds and Neighborhood Parks</td>
<td></td>
</tr>
<tr>
<td>Golf Courses, Riding Stables, Water Recreation, and Cemeteries</td>
<td></td>
</tr>
<tr>
<td>Office Buildings, Business Commercial, and Professional</td>
<td></td>
</tr>
<tr>
<td>Industrial, Manufacturing, Utilities, and Agriculture</td>
<td></td>
</tr>
</tbody>
</table>

*Residential development sites exposed to noise levels exceeding 60 Ldn shall be analyzed following protocols in Appendix Chapter 12, Section 1208A, Sound Transmission Control, California Building Code.

- **NORMAL ACCEPTABLE**
 Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special insulation requirements.

- **CONDITIONALLY ACCEPTABLE**
 Specified land use may be permitted only after detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design.

- **NORMALLY UNACCEPTABLE**
 New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

- **CLEARLY UNACCEPTABLE**
 New construction or development should generally not be undertaken because mitigation is usually not feasible to comply with noise element policies.
THIS PAGE INTENTIONALLY LEFT BLANK
GOALS, POLICIES AND IMPLEMENTATION MEASURES

GOAL ONE

Prevent the encroachment of incompatible land uses near known noise producing industries, railroads, airports, and other sources to protect the economic base of the County.

POLICY ONE

It is the policy of Stanislaus County to utilize the noise exposure information contained within the General Plan to identify existing and potential noise conflicts through the Land Use Planning and Project Review processes.

IMPLEMENTATION MEASURE

1. Areas within Stanislaus County shall be designated as noise-impacted if exposed to existing or projected future noise levels exterior to buildings exceeding the standards in Figure IV-2 or the performance standards described by Table IV-2. Maps showing existing and projected future noise exposures exceeding 60 Ldn or CNEL for the major noise sources are depicted in Figure IV-1, and Table IV-1.

 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors
GOAL TWO

Protect the citizens of Stanislaus County from the harmful effects of exposure to excessive noise.

POLICY TWO

It is the policy of Stanislaus County to develop and implement effective measures to abate and avoid excessive noise exposure in the unincorporated areas of the County by requiring that effective noise mitigation measures be incorporated into the design of new noise generating and new noise sensitive land uses.

IMPLEMENTATION MEASURES

1. New development of noise-sensitive land uses will not be permitted in noise-impacted areas unless effective mitigation measures are incorporated into the project design to reduce noise levels to the following levels:

 a) For transportation noise sources such as traffic on public roadways, railroads, and airports, 60 L_{dn} (or CNEL) or less in outdoor activity areas of single-family residences, 65 L_{dn} (or CNEL) or less in community outdoor space for multi-family residences, and 45 L_{dn} (or CNEL) or less within noise-sensitive interior spaces. Where it is not possible to reduce exterior noise due to these sources to the prescribed level using a practical application of the best available noise-reduction technology, an exterior noise level of up to 65 L_{dn} (or CNEL) will be allowed. Under no circumstances will interior noise levels be allowed to exceed 45 L_{dn} (or CNEL) with the windows and doors closed in residential uses.

 b) For other noise sources such as local industries or other stationary noise sources, noise levels shall not exceed the performance standards contained within Table IV-2.

 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

2. New development of industrial, commercial, or other noise generating land uses will not be permitted if resulting noise levels will exceed 60 L_{dn} (or CNEL) in noise-sensitive areas. Additionally, the development of new noise-generating land uses, which are not preempted from local noise regulation, will not be permitted if resulting noise levels will exceed the performance standards contained within Table IV-2 in areas containing residential or other noise sensitive land uses.

 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors
TABLE IV-2

MAXIMUM ALLOWABLE NOISE EXPOSURE - STATIONARY NOISE SOURCES

<table>
<thead>
<tr>
<th></th>
<th>Daytime 7 a.m. to 10 p.m.</th>
<th>Nighttime 10 p.m. to 7 a.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly L_{eq}, dBA</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Maximum level, dBA</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

Each of the noise level standards specified in Table IV-2 shall be reduced by five (5) dBA for pure tone noises, noise consisting primarily of speech or music, or for recurring impulsive noises. The standards in Table IV-2 should be applied at a residential or other noise-sensitive land use and not on the property of a noise-generating land use. Where measured ambient noise levels exceed the standards, the standards shall be increased to the ambient levels.

3. Prior to the approval of a proposed development of noise-sensitive land uses in a noise-impacted area, or the development of industrial, commercial or other noise-generating land use in an area containing noise-sensitive land uses, an acoustical analysis shall be required. Where required, an acoustical analysis shall:

 a) Be the responsibility of the applicant.
 b) Be prepared by a qualified acoustical consultant experienced in the fields of environmental noise assessment and architectural acoustics.
 c) Include representative noise level measurements with sufficient sampling periods and locations to adequately describe local conditions.
 d) Include estimated noise levels in terms of L_{dn} (or CNEL) and the standards of Table IV-2 (if applicable) for existing and projected future (10-20 years hence) conditions, with a comparison made to the adopted polices of the Noise Element.
 e) Include recommendations for appropriate mitigation to achieve compliance with the adopted policies and standards of the Noise Element.
 f) Include estimates of noise exposure after the prescribed mitigation measures have been implemented. If compliance with the adopted standards and policies of the Noise Element will not be achieved, a rationale for acceptance of the project must be provided.

Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

4. Projects which go through the CEQA review process require an acoustical analysis shall include a monitoring program to specifically implement the recommended mitigation to noise impacts associated with the project.

Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

1 As determined at the property line of the receiving land use. When determining the effectiveness of noise mitigation measures, the standards may be applied on the receptor side of noise barriers or other property line noise mitigation measures.
5. Noise level criteria applied to land uses other than noise sensitive uses shall be consistent with the recommendations of Figure IV-2: Normally Accepted Community Noise Environments.
 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

6. Stanislaus County shall enforce Sound Transmission Control Standards in the California Administrative Code, Title 25, Section 1092 concerning the construction of new multiple-occupancy dwellings such as hotels, apartments, and condominiums in areas where the existing or projected future noise environment exceeds 60 L_{dn} or CNEL.
 Responsible Department: Planning

7. Replacement of noise-sensitive land uses located in noise-impacted areas which are destroyed in a disaster shall not be considered in conflict with this element if replacement occurs within one year.
 Responsible Departments: Environmental Resources, Planning

POLICY THREE

It is the objective of Stanislaus County to protect areas of the County where noise-sensitive land uses are located.

IMPLEMENTATION MEASURES

1. Require the evaluation of mitigation measures for projects that would cause the L_{dn} at noise-sensitive uses to increase by 3 dBA or more and exceed the normally acceptable level, cause the L_{dn} at noise-sensitive uses to increase 5 dBA or more and remain normally acceptable, or cause new noise levels to exceed the noise ordinance limits (after adoption).
 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

2. Actively enforce the Stanislaus County Noise Control Ordinance to reduce the number of incidents of excessive noise.
 Responsible Departments: Sheriff, Environmental Resources, Planning, Planning Commission, Board of Supervisors

3. New equipment and vehicles purchased by Stanislaus County shall comply with noise level performance standards of the industry and be kept in proper working order to reduce noise impacts.
 Responsible Department: Chief Executive Office

4. Stanislaus County should encourage the California Highway Patrol and local law enforcement officers to actively enforce existing sections of the California Vehicle Code relating to excessive vehicle noise.
 Responsible Department: Board of Supervisors
POLICY FOUR

It is the objective of Stanislaus County to ensure that the Noise Element is consistent with and does not conflict with other elements of the Stanislaus County General Plan or adopted Airport Land Use Compatibility Plan(s) (ALUCP).

IMPLEMENTATION MEASURES

1. The Noise Element shall be reviewed and updated as necessary to remain consistent with the Land Use and Circulation Elements of the General Plan.
 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors

2. The Land Use and Circulation Elements of the General Plan shall be continually reviewed to ensure consistency with the findings and policies of the Noise Element as they relate to the prevention of future noise conflicts.
 Responsible Department: Planning

3. The Noise Element and Land Use Elements of the General Plan shall be reviewed and amended as necessary to ensure consistency with the policies of the Airport Land Use Compatibility Plan(s) (ALUCP) as they relate to the prevention of future noise conflicts.
 Responsible Departments: Planning, Planning Commission, Airport Land Use Commission, Board of Supervisors.

4. Update the Stanislaus County Noise Control Ordinance as necessary to be consistent with the General Plan and/or adopted Airport Land Use Compatibility Plan(s) (ALUCP).
 Responsible Departments: Environmental Resources, Planning, Planning Commission, Board of Supervisors
Chapter IV

NOISE SUPPORT DOCUMENTATION

Prepared by
Illingworth & Rodkin, Inc.
Acoustics – Air Quality
THIS PAGE INTENTIONALLY LEFT BLANK
Stanislaus County General Plan Update
Technical Reference Document for Noise Analysis

November 25, 2005

Prepared for:
Planning and Community Development Department
1010 Tenth Street, Suite 3400
Modesto, CA 95354

Prepared by:
Dana M. Lodico
Richard B. Rodkin, P. E.

ILLINGWORTH & RODKIN, INC.
Acoustics · Air Quality
505 Petaluma Boulevard South
Petaluma, CA 94952
(707) 766-7700

Job No.: 04-081
A. Introduction

This Technical Reference Document is a supplement to the Noise Element of the General Plan, which provides background information concerning the methods and data used in preparation of the Noise Element. It is intended that this document be used by Stanislaus County as a resource when evaluating noise related implications of specific development proposals or long-range planning efforts. A brief discussion of acoustical fundamentals is presented to assist the reader in understanding the subsequent discussion. The discussion of the existing noise environment is based upon the results of a noise monitoring survey conducted in July and August 2004 and supplemented by the noise study report prepared by Illingworth & Rodkin, Inc. for the Ceres Southern Gateway Study. This study focuses on transportation noise sources such as vehicular traffic, railroad noise, and aircraft activities. Major industrial facilities in the County are also discussed.

B. Fundamentals of Acoustics

1. Measuring Noise

Noise may be defined as unwanted sound. Noise is usually objectionable because it is disturbing or annoying. The objectionable nature of sound could be caused by its pitch or its loudness. Pitch is the height or depth of a tone or sound, depending on the relative rapidity (frequency) of the vibrations by which it is produced. Higher pitched signals sound louder to humans than sounds with a lower pitch. Loudness is intensity of sound waves combined with the reception characteristics of the ear. Intensity may be compared with the height of an ocean wave in that it is a measure of the amplitude of the sound wave.

In addition to the concepts of pitch and loudness, there are several noise measurement scales which are used to describe noise in a particular location. A decibel (dB) is a unit of measurement which indicates the relative amplitude of a sound. The zero on the decibel scale is based on the lowest sound level that the healthy, unimpaired human ear can detect. Sound levels in decibels are calculated on a logarithmic basis. An increase of 10 decibels represents a ten-fold increase in acoustic energy, while 20 decibels is 100 times more intense, 30 decibels is 1,000 times more intense, etc. There is a relationship between the subjective noisiness or loudness of a sound and its intensity. Each 10 decibel increase in sound level is perceived as approximately a doubling of loudness over a fairly wide range of intensities. Technical terms are defined in Table 1.

There are several methods of characterizing sound. The most common in California is the A-weighted sound level or dBA. This scale gives greater weight to the frequencies of sound to which the human ear is most sensitive. Representative outdoor and indoor noise levels in units of dBA are shown in Table 2. Because sound levels can vary markedly over a short period of time, a method for describing either the average character of the sound or the statistical behavior of the variations must be utilized. Most commonly, environmental sounds are described in terms of an average level that has the same acoustical energy as the summation of all the time-varying events. This energy-equivalent sound/noise descriptor is called Leq. The most common averaging period is hourly, but Leq can describe any series of noise events of arbitrary duration.
The scientific instrument used to measure noise is the sound level meter. Sound level meters can accurately measure environmental noise levels to within about plus or minus 1 dBA. Various computer models are used to predict environmental noise levels from sources, such as roadways and airports. The accuracy of the predicted models depends upon the distance the receptor is from the noise source. Close to the noise source, the models are accurate to within about plus or minus 1 to 2 dBA.

TABLE 1: DEFINITIONS OF ACOUSTICAL TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decibel, dB</td>
<td>A unit describing the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micropascals (20 microneutrons per square meter).</td>
</tr>
<tr>
<td>Frequency, Hz</td>
<td>The number of complete pressure fluctuations per second above and below atmospheric pressure.</td>
</tr>
<tr>
<td>A-Weighted Sound Level, dBA</td>
<td>The sound pressure level in decibels as measured on a sound level meter using the A-weighting filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise. All sound levels in this report are A-weighted, unless reported otherwise.</td>
</tr>
<tr>
<td>L01, L10, L50, L90</td>
<td>The A-weighted noise levels that are exceeded 1%, 10%, 50%, and 90% of the time during the measurement period.</td>
</tr>
<tr>
<td>Equivalent Noise Level, Leq</td>
<td>The average A-weighted noise level during the measurement period.</td>
</tr>
<tr>
<td>Community Noise Equivalent Level, CNEIL</td>
<td>The average A-weighted noise level during a 24-hour day, obtained after addition of 5 decibels in the evening from 7:00 pm to 10:00 pm and after addition of 10 decibels to sound levels measured in the night between 10:00 pm and 7:00 am.</td>
</tr>
<tr>
<td>Day/Night Noise Level, Ldn</td>
<td>The average A-weighted noise level during a 24-hour day, obtained after addition of 10 decibels to levels measured in the night between 10:00 pm and 7:00 am.</td>
</tr>
<tr>
<td>Lmax, Lmin</td>
<td>The maximum and minimum A-weighted noise level during the measurement period.</td>
</tr>
<tr>
<td>Ambient Noise Level</td>
<td>The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.</td>
</tr>
<tr>
<td>Intrusive</td>
<td>That noise which intrudes over and above the existing ambient noise at a given location. The relative intrusiveness of a sound depends upon its amplitude, duration, frequency, and time of occurrence and tonal or informational content as well as the prevailing ambient noise level.</td>
</tr>
</tbody>
</table>
TABLE 2 TYPICAL SOUND LEVELS

<table>
<thead>
<tr>
<th>Noise Generators (At a Given Distance from Noise Source)</th>
<th>A-Weighted Sound Level in Decibel</th>
<th>Noise Environments</th>
<th>Subjective Impression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil defense siren (100 feet)</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet take-off (200 feet)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel pile drive (100 feet)</td>
<td>120</td>
<td>Rock music concert</td>
<td>Pain threshold</td>
</tr>
<tr>
<td>Freight cars (50 feet)</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic drill (50 feet)</td>
<td>100</td>
<td>Boiler room</td>
<td>Very loud</td>
</tr>
<tr>
<td>Freeway (100 feet)</td>
<td>90</td>
<td>Printing press plant</td>
<td></td>
</tr>
<tr>
<td>Vacuum cleaner (10 feet)</td>
<td>80</td>
<td>In kitchen with garbage disposal running</td>
<td>Moderately loud</td>
</tr>
<tr>
<td>Light traffic (100 feet)</td>
<td>70</td>
<td>Data processing center</td>
<td></td>
</tr>
<tr>
<td>Large transformer (200 feet)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department store</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private business office</td>
<td>40</td>
<td></td>
<td>Quiet</td>
</tr>
<tr>
<td>Soft whisper (5 feet)</td>
<td>30</td>
<td>Quiet bedroom</td>
<td></td>
</tr>
<tr>
<td>Recording studio</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold of hearing</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the sensitivity to noise increases during the evening and at night -- because excessive noise interferes with the ability to sleep -- 24-hour descriptors have been developed that incorporate artificial noise penalties added to quiet-time noise events. The Community Noise Equivalent Level, CNEL, is a measure of the cumulative noise exposure in a community, with a 5 dB penalty added to evening (7:00 p.m. - 10:00 p.m.) and a 10 dB addition to nocturnal (10:00 p.m. - 7:00 a.m.) noise levels. The Day/Night Average Sound Level, Ldn, is essentially the same as CNEL, with the exception that the evening time period is dropped and all occurrences during this three-hour period are grouped into the daytime period.
2. Effects of Noise
This section discusses several effects of noise including hearing loss, sleep and speech interference and annoyance.

a. Hearing Loss
While physical damage to the ear from an intense noise impulse is rare, a degradation of auditory acuity can occur even within a community noise environment. Hearing loss occurs mainly due to chronic exposure to excessive noise, but may be due to a single event such as an explosion. Natural hearing loss associated with aging may also be accelerated from chronic exposure to loud noise.

The Occupational Safety and Health Administration (OSHA) has a noise exposure standard, which is set at the noise threshold where hearing loss may occur from long-term exposures. The maximum allowable level is 90 dBA averaged over eight hours. If the noise is above 90 dBA, the allowable exposure time is correspondingly shorter.

b. Sleep and Speech Interference
The thresholds for speech interference indoors are about 45 dBA if the noise is steady and above 55 dBA if the noise is fluctuating. Outdoors the thresholds are about 15 dBA higher. Steady noise of sufficient intensity (above 35 dBA) and fluctuating noise levels above about 45 dBA have been shown to affect sleep. Interior residential standards for multi-family dwellings are set by the State of California at 45 dBA L_{dn}.

The standard is designed for sleep and speech protection and most jurisdictions apply the same criterion for all residential uses. Typical structural attenuation is 12 to 17 dBA with open windows. With closed windows in good condition, the noise attenuation factor is around 20 dBA for an older structure and 25 dBA for a newer dwelling. Sleep and speech interference are therefore possible when exterior noise levels are about 57 to 62 dBA L_{dn} with open windows and 65 to 70 dBA L_{dn} if the windows are closed. Levels of 55 to 60 dBA are common along collector streets and secondary arterials, while 65 to 70 dBA is a typical value for a primary/major arterial. Levels of 75 to 80 dBA are normal noise levels at the first row of development outside a freeway right-of-way. In order to achieve an acceptable interior noise environment, bedrooms facing secondary roadways need to be able to have their windows closed; those facing major roadways and freeways typically need special glass windows.

c. Annoyance
Attitude surveys are used for measuring the annoyance felt in a community for noises intruding into homes or affecting outdoor activity areas. In these surveys, it was determined that the causes for annoyance include interference with speech, radio and television, house vibrations, and interference with sleep and rest. The L_{dn} as a measure of noise has been found to provide a valid correlation of noise level and the percentage of people annoyed.

There continues to be disagreement about the relative annoyance of noise from aircraft and roadways. When measuring the percentage of the population highly annoyed, the threshold for ground vehicle noise is about 55 dBA L_{dn}. At an L_{dn} of about 60 dBA, approximately two percent
of the population is highly annoyed. When the L_{dn} increases to 70 dBA, the percentage of the population highly annoyed increases to about 12 percent of the population. There is, therefore, an increase of about one percent per dBA between an L_{dn} of 60 to 70 dBA. Between an L_{dn} of 70 to 80 dBA, each decibel increase results in about a two percent increase in population that is highly annoyed. People appear to respond more adversely to aircraft noise. When the L_{dn} is 60 dBA, approximately ten percent of the population is believed to be highly annoyed. Each decibel increase to 70 dBA adds about two percentage points to the number of people highly annoyed. Above 70 dBA, each decibel increase results in about a three percent increase in the percentage of the population highly annoyed.

c. Existing Noise Environment

1. **Existing Noise Sources in Stanislaus County**

 The major noise sources in Stanislaus County are vehicular traffic on state highways and major county roadways, railroad operations, airport operations, and industrial activities. This document focuses on transportation noise sources. Roadway traffic generates noise throughout the county. Railroad trains intermittently generate noise levels that are significant along the railroad tracks. General aviation aircraft contribute to intermittent noise levels in the county. Noise is also generated on individual parcels whether industrial, commercial or residential. These noise sources do not affect the overall noise environment throughout the community. CNEL contours for operations at the Oakdale Municipal Airport, Patterson Airport, Turlock Airport, Modesto City/County Airport, and the Crows Landing Naval Auxiliary Landing Field were derived from the existing Airport Master Plan reports as available and are shown in Appendix A. Figure A-1 in Appendix A shows the generalized locations of long and short-term noise measurement sites for major ground transportation noise sources throughout Stanislaus County.

2. **Long-term Noise Measurements**

 Daily noise levels were monitored at 11 locations in unincorporated Stanislaus County from July 20th to 22nd, 2004, at 4 locations in Ceres from May 18th to 21st, 2004, and at 4 additional locations in unincorporated areas and within the city of Hughson on August 31st-September 2nd, 2004. The noise measurement locations are shown on Figure A-1. The measured data are summarized in Table A-1 in Appendix A. The daily trends in noise levels measured at the 19 long-term sites are summarized in Figures A-2 through A-21 of Appendix A. The following discussion summarizes the long-term noise measurements.

a. **Location LT-1 – Highway 219**

 Location LT-1 was selected to represent the noise exposure along Hwy 219. The measurement location was about 60 feet from the centerline of the roadway at the setback of the residence at 907 Kiernan Road, west of Highway 108. The data, shown in Figure A-2 of Appendix A, shows that the hourly daytime noise levels ranged from 66 to 68 dBA Leq and the hourly nighttime noise levels ranged from 56 to 66 dBA. The measured overall day/night noise level was 68 dBA L_{dn}.

IV-20
b. Location LT-2 – Highway 108
This location was selected to measure the noise level along Highway 108, just north of Highway 219. The noise level approximately 50 feet from the centerline of Highway 108 was 76 dBA Ldn. Hourly daytime noise levels ranged from 71 to 74 dBA Leq and the hourly nighttime noise levels ranged from 64 to 71 dBA Leq. The data are shown in Figure A-3 of Appendix A.

c. Location LT-3 – SR 99, Northern Stanislaus County
This noise measurement location was approximately 200 feet from the centerline of SR 99 near the northern county line and was selected to measure vehicular traffic noise along SR 99 in the northern portion of the county. The measured noise level was 78 dBA Ldn and also included some railroad noise from the Union Pacific Railroad. The hourly average noise levels typically ranged from 69 dBA during the nighttime with no train movements to 75 dBA during the peak hour. Maximum noise levels generated by train movements were typically 81 to 82 dBA. The data are shown in Figure A-4 of Appendix A.

d. Location LT-4 – Highway 132
Noise levels were measured approximately 30 feet from the centerline of Highway 132, near the eastern county line. The measured day/night noise level was 68 dBA Ldn. Hourly average noise levels typically range from 63 to 67 dBA during daytime hours and drop to 51 dBA during nighttime hours. One loud event took place between 2:00 and 3:00 am, raising the Leq/hr by 6-9 dB above typical nighttime levels. This loud event is likely to have been a siren or loud vehicle along Highway 132. The measured data are shown on Figure A-5 of Appendix A.

e. Location LT-5 – Highway 120, Eastern Stanislaus County
Location LT-5 was selected to measure noise exposure along Highway 120 and was located approximately 50 feet from the centerline of the roadway near the eastern county line. The measured noise level was 75 dBA Ldn. The noise measurement data are shown in Figure A-6 of Appendix A. Hourly average noise levels typically ranged from 70 to 74 dBA during daytime hours and 62 to 72 dBA during nighttime hours.

f. Location LT-6 – Highway 4
Measurement Location LT-6 was located along Highway 4, east of Farmington. The noise environment at Location LT-6 was dominated by vehicular traffic along Highway 4. The measured noise level was 69 dBA Ldn. The noise measurement data are shown in Figure A-7 of Appendix A. Hourly average noise levels typically ranged from 63 to 67 dBA during daytime hours and dropped to 55 dBA during nighttime hours.

g. Location LT-7 – Central Avenue near Grayson Road
Location LT-7 was approximately 30 feet from the centerline of Central Avenue, south of Grayson Road. The measured noise level was 72 dBA Ldn. The noise measurement data are shown in Figure A-8 of Appendix A. Hourly average noise levels typically ranged from 65 to 70 dBA during daytime hours and dropped to 59 dBA during nighttime hours.
h. Location LT-8 – Interstate 5
Measurement Location LT-8 was approximately 65 feet from the near lane of Interstate 5 and was selected to characterize noise levels along Interstate 5. The measured noise level was 80 dBA Ldn. The data show a tight range of noise levels from the minimum sound level to the maximum sound level, which is typical of freeway traffic noise. To ensure the noise exposure in this location was dominated by Interstate 5 traffic noise, an additional measurement was made nearby (LT-16) in August/September 2004 and compared to the results of this measurement. Hourly average noise levels do not vary much day or night due to heavy truck traffic at night and heavy total traffic during the daytime. Hourly average noise levels typically ranged from about 73 to 75 dBA Leq. The day/night noise level at this location was 80 dBA Ldn. The noise measurement data are shown in Figure A-9 of Appendix A.

i. Location LT-9 – Highway 33
The measurement at Location LT-9 was approximately 50 feet from the centerline of Highway 33, just north of Crows Landing, and was selected to characterize the noise exposure along Highway 33. The measured noise level was 72 dBA Ldn. Hourly average noise levels ranged from about 65 to 70 dBA Leq during the daytime and drop to about 57 dBA Leq at night. The noise measurement data are shown in Figure A-10 of Appendix A.

j. Location LT-10 – BNSF Railroad, Santa Fe Avenue, North of Hughson
Two noise measurements were made at location LT-10, just north of Hughson at the intersection of Leedom Road and Santa Fe Avenue. The measurement location was used to characterize the noise environment along Santa Fe Avenue and the BNSF Railroad without interference from outside noise sources. The measurement location was about 150 feet east of the railroad tracks and about 50 feet east of the near lane of Santa Fe Avenue. Vehicular traffic along Santa Fe Avenue is a major contributing noise source at this location, with intermittent very loud noise events produced by train passbys. The measured day-night average noise level during the first measurement period, on July 21-22, 2004, was 78 dBA Ldn. Hourly average noise levels ranged from about 70 to 74 dBA Leq during the daytime and drop to about 62 dBA Leq at night.

The second measurement period took place on August 31 to September 2, 2004 and included exceedence data, which was correlated with exceedence data from LT-17 to estimate the number of train movements that took place during the measurement period. Review of exceedence data shows that 65 train movements took place during the two-day period with approximately 54% daytime operations (7:00 am to 7:00 pm), 11% evening operations (7:00 pm to 10:00 pm), and 35% nighttime operations (10:00 pm to 7:00 am). Train movements ranged from a few seconds up to more than two minutes in duration. The Ldn at this location was measured to be approximately 76 dBA, which includes both Railroad and Santa Fe Avenue traffic noise. Typical hourly average noise levels during the daytime ranged from 60 to 73 dBA Leq and with noise levels ranging from about 68 to 75 dBA Leq in the nighttime. The noise measurement data are shown in Figures A-11 and A-12 of Appendix A.

k. Location LT-11 – Hatch Road
Location LT-11 was 65 feet from the centerline of Hatch Road, north of Faith Home Road, and was selected to characterize existing noise levels along Hatch Road. The measured noise level was
74 dBA Ldn. The noise measurement data are shown in Figure A-13 of Appendix A. Hourly average noise levels ranged from about 66 to 71 dBA Leq during the daytime and drop to about 62 dBA Leq at night.

1. Location LT-12 – UPRR Railroad, State Route 99
Noise levels were monitored at this location to determine the noise levels and train frequency for the Union Pacific Railroad line. The measurement location was about 20 feet west of the railroad tracks in Ceres and about 105 feet east of the near lane of State Route 99. Vehicular traffic along SR 99 is a major contributing noise source at this location, with intermittent very loud noise events produced by train passbys. The measured noise level over a three day measurement period ranged from 83 to 85 dBA Ldn. The range of noise levels was again narrow with typical hourly average noise levels during the daytime in the range of 76 to 80 dBA Leq and with noise levels dropping to about 71 dBA Leq in the middle of the night with no train passbys. Review of exceedance data shows that 48 train movements took place during the three-day period, with an average of about 16 trains per day with approximately 54% daytime operations (7:00 am to 7:00 pm), 13% evening operations (7:00 pm to 10:00 pm), and 33% nighttime operations (10:00 pm to 7:00 am). The Ldn at this location was measured to be approximately 83 to 85 dBA, which includes both Railroad and Highway noise. Based on additional measurements, it is estimated that SR 99 traffic noise generates an Ldn of approximately 82 dBA at this location and the rail operations generate an Ldn of approximately 80 to 83 dBA. The noise measurement data are shown in Figure A-14 of Appendix A.

m. Location LT-13 – Service Road, Ceres
Measurement location LT-13 was approximately 40 feet from the centerline of Service Road at the intersection of Service Road and Moffet Road in Ceres. This measurement location was selected to characterize the noise environment along Service Road and vehicular traffic along Service Road is the major contributing noise source at this location, with some local traffic noise generated along Moffet Road. The measured noise level was about 72 dBA Ldn. Train passbys along the western side of SR 99 were audible at times during passbys, but did not substantially contribute to the overall noise levels. Hourly average noise levels ranged from about 68 to 73 dBA Leq during the daytime and drop to about 61 dBA Leq at night. The noise measurement data are shown in Figure A-15 of Appendix A.

n. Location LT-14 – State Route 99
Noise levels were monitored at this location to determine the noise levels at residential areas along SR 99. The measurement location was about 270 feet east of the near lane of State Route 99 in Ceres, in the backyard of 2805 Evalee Lane. Vehicular traffic along SR 99 is a major contributing noise source at this location, with occasional local traffic noise produced along El Camino Avenue. The measurement was located behind a six-foot fence. The measured noise level was about 72 dBA Ldn. Train passbys along the western side of SR 99 were audible at times during passbys, but did not substantially contribute to the overall noise levels. Hourly average noise levels ranged from about 65 to 68 dBA Leq during the daytime and drop to about 60 dBA Leq at night. The noise measurement data are shown in Figure A-16 of Appendix A.
o. Location LT-15 – State Route 99
The noise environment at Location LT-15, located approximately 130 feet east of the near lane of State Route 99, was dominated by noise generated by State Route 99 traffic. Occasional local traffic noise produced along El Camino Avenue and local residential noise also contributed to the noise environment. The measured noise level was about 78 dBA Ldn. Train passbys along the western side of SR 99 were audible at times during passbys, but did not substantially contribute to the overall noise levels. Hourly average noise levels ranged from about 70 to 74 dBA Leq during the daytime and drop to about 64 dBA Leq at night. The noise measurement data are shown in Figure A-17 of Appendix A.

p. Location LT-16 – Interstate 5
Measurement Location LT-16 was approximately 60 feet east of the near lane of Interstate 5 (Northbound) in Westley and was selected to characterize noise levels along Interstate 5. The measured noise level was 80 dBA Ldn. The data show a tight range of noise levels from the minimum sound level to the maximum sound level, which is typical of freeway traffic noise and consistent with measurement LT-8. Hourly average noise levels do not vary much day or night due to heavy truck traffic at night and heavy total traffic during the daytime. Hourly average noise levels typically ranged from about 73 to 75 dBA Leq. The noise measurement data are shown in Figure A-18 of Appendix A.

q. Location LT-17 – BNSF Railroad, Santa Fe Avenue
Noise levels were monitored at this location to determine the noise levels and train frequency for the Burlington Northern and Santa Fe (BNSF) Railroad line. The measurement location was about 150 feet east of the railroad tracks in Hughson and about 25 feet east of the near lane of Santa Fe Avenue. Vehicular traffic along Santa Fe Avenue is a major contributing noise source at this location, with intermittent very loud noise events produced by train passbys. The Builders Choice Truss Company in Hughson is located near this location and industrial noise is audible when traffic along Santa Fe Avenue is light and there are no train movements. Typical hourly average noise levels during the daytime ranged from 68 to 78 dBA Leq and with noise levels ranging from about 59 to 80 dBA Leq in the nighttime. Review of exceedence data shows that 65 train movements took place during the two-day period with approximately 54% daytime operations (7:00 am to 7:00 pm), 11% evening operations (7:00 pm to 10:00 pm), and 35% nighttime operations (10:00 pm to 7:00 am). Train movements ranged from a few seconds up to more than two minutes in duration. The Ldn at this location was measured to be approximately 80 to 82 dBA, which includes both Railroad and Santa Fe Avenue traffic noise. The noise measurement data are shown in Figure A-19 of Appendix A.

r. Location LT-18 – Sierra Railroad
Noise levels were monitored at this location to determine the noise levels and train frequency for the Sierra Railroad line just east of Oakdale. The measurement location was about 50 feet north of the railroad tracks and about 25 feet north of the centerline of Sierra Road. Vehicular traffic along Sierra Road is light, but includes a high percentage of trucks. The measured noise level over a two-day measurement period was 72 dBA Ldn. Typical hourly average noise levels during the peak daytime hours ranged from 70 to 72 dBA Leq and with noise levels dropping to about 58 dBA Leq in the middle of the night with no train passbys. Review of exceedence data shows that 4
train movements took place during the two-day period, with 75% daytime operations (7:00 am to 7:00 pm) and 25% nighttime operations (10:00 pm to 7:00 am). The L_{dn} at this location was measured to be approximately 72 dBA, which includes both Railroad and Sierra Road traffic noise. The noise measurement data are shown in Figure A-20 of Appendix A.

3. Location LT-19 – Tidewater Railroad
Noise levels were monitored at this location to determine the noise levels and train frequency for the Tidewater Southern branch line of the Union Pacific Railroad line. Noise levels were measured along Saint John’s Road, just south of Del Rio. The measurement location was about 35 feet from the railroad tracks and about 25 feet from the centerline of St. John’s Road. Vehicular traffic along St. John’s Road is the major contributing noise source at this location, with intermittent very loud noise events produced by train passes. The measured noise level over the measurement period ranged from was 69 to 70 dBA Ldn. Typical hourly average noise levels during the peak daytime hours ranged from 64 to 70 dBA Leq and with noise levels dropping to about 43 dBA Leq in the middle of the night with no train passes. Review of exceedence data shows that 1 train movement took place during the two-day period, during daytime hours. The L_{dn} at this location was measured to be approximately 69 to 70 dBA, which includes both Railroad and traffic noise. The noise measurement data are shown in Figure A-21 of Appendix A.

3. Short-Term Spot Measurements
Short-term spot measurements were made at ten locations throughout Stanislaus County in July of 2004 to characterize typical daytime noise levels and to collect traffic and noise data to be used subsequently in the computation of traffic noise contours for the General Plan. The noise measurement locations are shown in Figure A-1 in Appendix A. The measured data is summarized in Table A-2 in Appendix A. Vehicular traffic on the street network was the dominant noise source during measurements. There were small contributions from intermittent local noise such as distant dog barking or residential noise at a few of the locations. General aviation aircraft at Location ST-5 generated a maximum level of 54 dBA but automobiles and motorcycles were typically 10 to 20 dBA louder.

4. Roadways
The California Department of Transportation (Caltrans) Noise Prediction Model Leq V2 was used to develop L_{dn} contours for the state highways and major county roadways within the unincorporated areas of Stanislaus County. Annual average daily traffic volumes (AADT) and truck mixes for existing (2000) conditions were obtained from Caltrans and the Stanislaus County Department of Public Works. These data were input into the traffic noise model for calibration with noise measurements conducted during the noise monitoring survey. Existing noise levels along county streets and highways were then calculated with the calibrated traffic noise model. Noise levels were estimated at 75 feet from the centerline of major roadways throughout the county and 150 feet from the center of highways. A summary of calculated distances to L_{dn} contours for existing and future conditions along major community roadways are shown in Table B-1 in Appendix B. The distances reported in Table B-1 can be considered to be worst-case estimates of noise exposure throughout the county because calculations do not take acoustical shielding from buildings or topography into account. Existing roadway noise contours were not mapped because small changes in noise levels over time would not be distinguishable on a map of
the scale represented in this document. For planning purposes, noise contour maps of the future noise levels can be found in Appendix B.

5. Railroads
Railroad operations in Stanislaus County include high speed mainline operations on the Burlington Northern and Santa Fe (BNSF) Railway and Union Pacific Railroad and low speed mainline and switching operations on the AT&SF Railway, UPRR, Sierra Railroad, Modesto and Empire Traction Company Railroad, and Tidewater Southern Railroad. Existing noise contours for these rail lines can be found in Table A-3 of Appendix A.

a. Union Pacific Railroad (UPRR)
The UPRR in Stanislaus County includes operations on the main line which passes through Salida, Modesto, Ceres, Keyes, and Turlock and operations on the branch line on the west side of the county, which passes through Wesley, Patterson, Crows Landing, and Newman. Based on noise measurements in Ceres and near the northern county line, there are approximately 16 freight train movements per day on the main line. Trains are evenly distributed throughout the day and night, with approximately 54% daytime operations (7:00 am to 7:00 pm), 13% evening operations (7:00 pm to 10:00 pm), and 33% nighttime operations (10:00 pm to 7:00 am). The UPRR main line runs adjacent to SR 99 for the majority of its route through Stanislaus County. Based on measured noise levels along the tracks, the calculated distance from the center of the mainline to the 60 dBA Ldn railroad contour is approximately 680 feet for existing (2004) operations.

b. Burlington Northern and Santa Fe (BN & SF) Railway
Operations on the BNSF Railway in Stanislaus County occur on the mainline which runs through Riverbank, Hughson, Empire, and Denair, and on a branch line which connects the mainline at Riverbank with the with the Sierra Railroad in Oakdale. According to noise measurements made in and just north of Hughson, approximately 33 train movements take place each day with approximately 54% daytime operations (7:00 am to 7:00 pm), 11% evening operations (7:00 pm to 10:00 pm), and 35% nighttime operations (10:00 pm to 7:00 am). Train movements ranged from a few seconds up to more than two minutes in duration. Based on measured noise levels along the tracks, the calculated distance from the center of the mainline to the 60 dBA Ldn railroad contour is approximately 950 feet for existing (2004) operations.

c. Sierra Railroad
The Sierra Railroad operates between Oakdale and Standard and includes both freight and passenger trains. Freight trains are operated by Union Pacific and Burlington Northern Santa Fe and usually operate roughly three times per week. Passenger trips travel between Oakdale and the eastern Stanislaus County Line and include entertainment style railroad travel approximately 3 to 5 times per week with most trips occurring Thursday through Sunday. Additional trips are scheduled during holidays. Based on the noise measurement survey made east of Oakdale, 1 to 3 freight train movements take place each day with approximately 75% daytime operations (7:00 am to 7:00 pm) and 25% nighttime operations (10:00 pm to 7:00 am). Railroad and horn noise levels are clearly audible in areas of the county adjacent to the tracks, but they occur infrequently. The 60 dBA Ldn contour for this operation is approximately 80 feet from the centerline of the railroad for existing (2004) conditions located away from grade crossings.
d. Modesto and Empire Traction Company Railroad
The Modesto and Empire Traction Company is a short-line railroad which connects switching operations between the UPRR Railroad in Modesto and the AT&SF Railway in Empire. A typical train can vary from lone locomotives to 4-5 car trains, up to 60 car trains. Train speed is limited to a maximum of 20 mph, with an average speed of 1 mph. Train operations typically occur 24 hours per day from 11 pm on Sunday through 8 am on Saturday, with occasional train movements over the weekend. Operations are split into three shifts, with one crew working the 7 am to 3 pm shift, two crews working the 3 pm to 11 pm shift, and two crews working the 11 pm to 7 am shift. Train trips per day vary greatly, with lighter operations occurring during the daytime 7 am to 3 pm shift.

e. Tidewater Southern Railroad
The Tidewater Southern Railroad is a branch line operation of the Union Pacific Railroad. The line runs in a general north-south route through Stanislaus County passing through Del Rio, Modesto, and Turlock. The portion of the line from just south of Bangs Avenue through Modesto to Bonneefair was abandoned in 2000 and sections were removed or paved over in 2003. North of Bangs Road, operations typically occur 3 days per week on Tuesday, Thursday and Saturday. However, service may be operated more or less frequently depending on demand. According to noise measurements made south of Del Rio, approximately 6 train movements take place each day, with occasional evening and nighttime movements. The southern end of the line is served out of Rogers Holding Yard in Ceres and by unit grain trains directly off the former Southern Pacific rail line from Fresno. The 60 dBA L_{dn} contour for this operation is approximately 140 feet from the centerline of the railroad for existing (2004) conditions located away from grade crossings.

Source: Jim Smith, Union Pacific Railroad, telephone interview, October 8, 2004.

6. Airports
Aircraft noise in California is described in terms of the community noise equivalent level (CNEL). As mentioned previously, CNEL is approximately equivalent to the day/night average noise level (L_{dn}) but includes a 5 dB weighting factor for the evening hours (7:00 PM to 10:00 PM). CNEL contours for operations at the Oakdale Municipal Airport, Patterson Airport, Turlock Airport, and Modesto City / County Airport were derived from the existing Airport Master Plan reports as available. Noise contours for the Crows Landing Naval Auxiliary Landing Field are not included in this report because, at the present time, the airfield is not in use and future plans for the airfield were unavailable.

a. Modesto City/County Airport (Harry Sham Field)
The information for this portion of the report was compiled from the 2003 Airport Master Plan. The Modesto City/County Airport serves as the primary commercial service airport for Stanislaus County and includes two runways in a 28L and R – 10L and R configuration. In 2001, the airport included 89,832 total operations, with 43,574 passengers, 591,518 lbs. total freight, and 177 based aircraft. Operations are predicted to increase to 141,180 by the year 2022. Approximately 84
percent of Modesto Airport operations in 2001 occurred during daytime hours (7:00 am to 7:00 pm), 15 percent occurred during evening hours (7:00 pm to 10:00 pm), and one (1) percent occurred during nighttime hours (10:00 pm to 7:00 am). The Modesto City/County Airport includes air carriers, general aviation, and military operations. Itinerant general aviation accounts for approximately 62 percent of total general aviation operations, with 74 percent single engine aircraft, 9 percent multi-engine aircraft, 12 percent turboprops and jets, and 4 percent helicopters. The fleet mix transition over the past decade has been a move to high performance aircraft such as propjets and turbofan aircraft and this is expected to continue into the future years. The 2001 Master Plan contours are shown in Figure A-22 in Appendix A.

Source: Modesto City-County Airport (Harry Sham Field) 2002 Airport Master Plan, prepared by Coffman Associates.

b. Oakdale Municipal Airport

The information for this portion of the report was compiled from the 2003 Airport Master Plan. The Oakdale Airport is composed of 117 acres of land with one paved runway. The east-west runway 10-28 is 3,020 feet long and can handle only small general aviation aircraft. The airport is located approximately two miles east of Oakdale City boundaries and the site is owned by the City of Oakdale. Land uses surrounding the airport are generally agricultural, with some rural residential uses. A few of these residences are located along Laughlin Road, the access road to the airport. The land surrounding the airport is currently zoned for agricultural uses and no residential uses fall within the 65 CNEL contour.

The airport is not considered particularly busy, except on summer weekends, and aircraft operations have not been counted on any continuing basis. The vast majority of operations are by single-engine aircraft, with approximately 60% local operations and 40% itinerant operations in 1995. Of these, approximately 4% of all operations were estimated to be by twin-engine aircraft and 0.5% by business jets. It was forecasted in 1995 that by the year 2015, there would be 80 based aircraft and 51,380 total operations, with a peak hourly runway demand of 39 under the runway-use configuration actually utilized and 5 under a single runway use configuration. It is assumed the single runway condition will occur for approximately 10% of the year and will not continue over a long period of time. A runway extension has been proposed to increase the existing runway to 4,400 feet, but has not been completed (as of August 2004). Future contours were calculated with and without the runway extension and it was found that there was an improvement in the CNEL contours with the extension, since the most active runway 28 will shift east away from developed areas. The 1996 Master Plan contours are shown in Figure A-23 in Appendix A with the runway extension.

c. Patterson Airport

The Patterson Airport is a small airport; built on approximately 30 acres with a runway (34/16) that is less than 2000 feet long. Small turbine-powered or reciprocal engine agricultural planes are the typical users, and planes of about 8,000 to 10,000 lbs gross weight are the largest that are able
to operate on this small runway. The majority of land use in the vicinity of the airport is agricultural, with the nearest noise sensitive areas located within the City of Patterson and more than a quarter mile from the airport. The 2001 Draft EIR for the City of Patterson does not include the airport as a significant noise source. Additionally, it is likely that the airport will be annexed to the City of Patterson by January 2005. Noise contours were not prepared for this airport. Based upon the airport size and operations, it is expected that the 60 dB CNEL contour for this airport is located very close to the airport so no noise sensitive land would be affected.

Sources: Patrick Bodin, City of Patterson, August 2004.

West Patterson Master Development Plan Draft EIR, prepared by Crawford Multiari & Clark Associates.

d. Turlock Airpark
Turlock Airpark is a small, public use airport with a few based aircraft. The airport is located just south of State Route 99, with portions of the airport located in both the City of Turlock and unincorporated Stanislaus County. Within county lands, the land use is primarily agricultural. The limited runway length prevents large aircraft and jets from using the airport, so that the majority of airport use is by single engine aircraft and ultralight aircraft. Twenty single engine aircraft and twelve ultralight aircraft are based at the Turlock Airpark. Noise contours were not prepared for this airport. Based on the limited capacity of the airport, it is estimated that the 60 dB CNEL contour for this airport lies within the airport boundaries so that noise sensitive uses are not significantly impacted.

Source: Michael Cooke, Planning Department, City of Turlock, August 2004.

e. Former Crows Landing Naval Auxiliary Landing Field (NALF)
The former Crows Landing Naval Auxiliary Landing Field is completely surrounded by Stanislaus County land. The site contains approximately 1,500 acres of land between Patterson and Crows Landing. Much of the facility property and most of the surrounding area is used for agriculture. The former NALF Crows Landing was commissioned in May 1943 and served primarily as an auxiliary airfield for operations from Naval Air Station, Moffet Field. The Navy closed the facility in 1994 it was transferred to NASA on July 1, 1994. In October 1999, NASA was authorized by to transfer the facility to Stanislaus County. At this time, NASA is no longer using the airfield and the property should be transferred to the County by the end of 2004. Noise contours were not prepared for this airport. There no current plan for the air field at this time, but a new Master Plan may eventually be prepared if the county decides to operate a General Aviation airport at this location.

Debra Whitmore, Senior Planner, Planning and Community Development, Stanislaus County, August 2004.
7. Industrial and Other Stationary Noise Sources

Noise is inherent to many industrial processes, even with the best available noise control technology. Updated noise exposure information for major industries in the unincorporated areas of Stanislaus County was developed from operational information obtained from plant operators. The industrial areas represented in the document are intended to identify noise sources that are located near noise sensitive land uses. The industrial areas are grouped into three categories: (1) those which are outside of any sphere of influence, but near County development, (2) those located within a sphere of influence, and (3) those located in the County agricultural zone, away from development. The main focus of this section of the document is on industry located outside of any sphere of influence, but near County development. Facilities located within a sphere of influence and near noise sensitive uses would be included in the applicable City Noise Element document.

Outside City Spheres of Influence, Near County Development

a. Berry Feed and Seed Company, Keyes
The Berry Feed and Seed facility receives and processes grain products for seed and animal feeds. Products are received by truck and rail. Major on-site noise sources include material and air handling fans, hammermills, roller mills, and heavy truck movements. The majority of the equipment is located inside a steel structure. Operations are conducted 24-hours per day year round. Residences located south of the facility have been purchased by Berry Feed and Seed and are used as company offices, storage, and liquid feed containers. The 60 dBA L_{dn} noise contour for this facility is estimated to be approximately 1550 feet from the center of the plant as specified in the 1987 documentation.

Source: Bruce Pace, Director of Safety and Environmental Affairs, Berry Feed and Seed, Telephone Interview, February 16, 2005.

b. California Almond Growers Exchange, Salida
The California Almond Growers Exchange is a receiving, processing, and storage facility. Noise generating operations include an almond shelling process, heavy truck movements, elevators, dust collectors, and conveyors. The plant typically operates 5 to 6 days per week during the hours of 6:00 am and midnight during almond harvesting season (September through November). Based on noise measurements conducted in 1986 during the off-season (BBA, 1987) an elevator generates noise levels of approximately 65 to 66 dBA at a distance of 900 feet from the operations and the processing equipment generates noise levels of approximately 66 dBA at a distance of 200 feet from the receiving area of the plant. The almond shelling process (an addition since 1986) is not expected to be distinguishable above noise levels already generated on the site by the other equipment. Noise levels would be higher during peak season, when there are large numbers of trucks and all stationary equipment is in full operation.

Source: Bill Weaver, Plant Manager, California Almond Growers Exchange, February 2005.
c. Dompe Company Warehouse, Crows Landing
The Dompe Warehouse is located adjacent to the Grisez Warehouse and used mostly as a storage facility. There are no major noise sources at the facility. Bean cleaning and treatment is performed at this facility during harvest season. The 60 dBA L_{dn} noise contour for this facility is expected to be located entirely within the property boundaries. Nearby noise sensitive uses are not significantly impacted by this facility, but may be impacted by the adjoining Grisez facility.

Source: Barbara Troesch, Accounts Payable, Dompe Company Warehouse, Telephone Interview, January 20, 2005.

d. Flory Industries, Salida
Flory Industries is a manufacturing and fabrication plant located west of Salida. The facility manufactures equipment including nut harvesters and sweepers, sprayers, blowers, and agricultural implements. The shop operates in three shifts 5 to 6 days per week; a daytime shift from 7:00 am to 3:30 pm, a swing shift from 4:00 pm to 12:30 am, and a smaller graveyard shift from 11:30 pm to 8:00 am. Most manufacturing operations are located within buildings, but steam cleaning and heavy duty riveting are performed outdoors. Noise sources which were audible at the property line during the 1987 survey included forklifts, trucks, welding and grinding operations, steam cleaning, and the compressor and pump operations. The airstrip previously located on the property and used for operations has been removed. Based on the removal of the airstrip and the previous 1987 technical noise document findings, the 60 dBA L_{dn} noise contour for this facility is expected to be located entirely within the property boundaries.

Source: Rodney Flory, Senior Partner and Treasurer, Flory Industries, January 2005.

e. Grisez Warehouse, Crows Landing
The Grisez warehouse complex includes three mills enclosed in separate buildings. Only one of the three mills is currently in use, with the additional two buildings being used as storage. The facility stores, cleans, and treats lima, baby lima, and baby green beans, as well as black eyed peas. Major noise sources include the one operating mill, ventilation fans, deliveries, and forklift operation. Approximately two heavy truck deliveries take place each week. The facility is typically operated from 7:00 am to 5:00 pm during the off-season and from 7:00 am to 7:00 pm during harvest season. Operations have decreased from the 1987 (when all three mills were running), but could conceivably return to previous operations. The 60 L_{dn} contour during peak season mill operations is estimated to be approximately 830 feet from the center of the milling equipment as specified in the 1987 documentation.

Source: Barbara Troesch, Accounts Payable, Dompe Company Warehouse, Telephone Interview, January 20, 2005.

f. Modesto Sand and Gravel, Modesto
Modesto Sand and Gravel is a demolition and excavation company which operates noisy equipment off-site. Heavy trucks, excavators, and loaders are sent out during daytime hours to the location of the demolition or excavation site. Equipment is stored on site when not in use and the only on-site noise sources would be vehicle movements moving to and from the facility. The 60
dBA L_{dn} noise contour for this facility is expected to be located entirely within the property boundaries.

Source: Grace Azevedo, Administrative Assistant, Modesto Sand and Gravel, Telephone Interview, February 15, 2005.

Inside City Spheres of Influence

g. Beard Industrial Tract, Modesto
The Beard Industrial Tract includes a variety of industrial uses, including food processing plants and transportation sources. Primary noise sources include the Modesto and Empire Traction Company Railroad movements, Burlington Northern and Santa Fe (BN & SF) Railway movements, traffic along Yosemite Boulevard, and aircraft operations at the Modesto City/County Airport (all discussed previously). South of the tract, the noise environment is generated primarily by industrial noise sources. It is likely that the 60 dBA L_{dn} noise contour for Beard Industrial Tract would be located within the tract boundaries. However, due to seasonal variations in operations and the many variables associated with the tract, it is recommended that detailed studies of current source operations be conducted whenever potentially noise sensitive land uses are proposed nearby.

h. Bonzi Landfill
The Bonzi Landfill operates from 6:00 am to 6:00 pm on 5-days per week with occasional Saturday operations and is not open to the public. Operations include the storage, recycling, and disposal of industrial wastes. Heavy trucks are used for waste handling and transportation to and from the site, with a limited number of nighttime truck activities (1-2). Nearby residences are approximately 150 yards from the working area and are acoustically shielded by berms and a block wall. The major noise source at these residences is heavy truck movements on Hatch Road.

Source: Steve Bonzi, General Manager, Bonzi Landfill, Telephone Interview, February 16, 2005.

i. Gallo Winery, Modesto
The Gallo Winery and Gallo Glass Company is a large industrial complex located east of Dry Creek, between Yosemite Boulevard and the Tuolumne River, and within the Modesto sphere of influence. No major changes in operations have occurred in the complex since 1986. Operations occur on a 24-hour per day basis, 365 days per year and include cooling towers, refrigeration equipment, and various types of small and large fans. In addition, heavy truck movements occur in some areas. Bottling operations are enclosed within the buildings. Based on noise measurements conducted in 1987 (BBA, 1987), noise levels at or near the plant boundaries typically range from approximately 55 to 70 dBA during periods of normal operations.

Source: Derrick Jarvis, Operations Manager, Gallo Winery, January 2005.

Agricultural Zone, Away From County Development
IV-33

Santa Fe Aggregates, Inc, Waterford Plant
The Santa Fe Aggregates Waterford Plant is a sand and gravel extraction and processing plant, located approximately 5 miles east of Waterford. Extraction, crushing, and screening operations typically occur weekdays between the hours of 6:00 am and 11:00 pm during peak season (June through October), and 7:00 am to 5:00 pm during off season, with occasional Saturday operations during peak season. The asphalt plant typically operates 4 days per week in peak season with a start up time of 6:00 am and 2 days per week during off-season with a start up time of 7:00 to 8:00 am. The concrete batch plant is no longer in use and has not been used for many years. Extraction operations utilize a backhoe and a belt conveyor line to transport material between facilities. Crushing operations include two cone crushers and a vertical impact crusher. The plant is now on electric power and no longer uses a diesel generator. Based on the 1987 technical noise document findings and updated operations information and without taking acoustical shielding into account, the ‘worst-case’ 60 dBA L_{dn} noise contour for this facility is expected to be located approximately 600 feet from excavation and hauling activities and approximately 4500 feet from the center of the processing plant during asphalt plant operations. Shielding from the bluff along the river would be expected to reduce noise levels significantly in areas north of SR 132.

Source: Michelle Cunningham, Division Manager, Santa Fe Aggregates, Inc, Telephone Interview, February 15, 2005.

8. Key Findings

a. Roadways, freeways, and railroads are the primary source of noise in Stanislaus County, with SR-99 and Interstate 5, the Union Pacific Railroad (UPRR), and the Burlington Northern and Santa Fe (BN & SF) Railway having the highest noise levels.

b. Localized and intermittent noise impacts occur as a result of aircraft over flights and industrial noise sources.

D. Future Noise Environment

1. Roadways
Future (2030) L_{dn} noise levels were estimated based on traffic volume data provided by the Stanislaus County Department of Public Works. A tabulated summary of calculated distances to L_{dn} contours for existing and future conditions are shown in Tables B-1 and B-2 in Appendix B. The predicted future (2030) L_{dn} noise levels along state highways and major county roadways throughout Stanislaus County at a distance of 75 feet from the centerline of the roadway are mapped in Figure B-1 in Appendix B. Predicted L_{dn} values are “worst-case” estimates because they do not take acoustical shielding from buildings or terrain into account.

2. Railroads
Information on the future operations of the railroads was unavailable and future noise contours were not prepared. Existing noise contour distances can be found in Appendix A. These data are the best available to describe the existing and future noise environments along the rail corridors.
3. **Airports**
Predicted future CNEL contours for operations at the Oakdale Municipal Airport and Modesto City / County Airport were derived from the existing Airport Master Plan reports as available and can be found in Figure B-3 in Appendix B. The noise contour maps show the extent of airport noise for planning purposes in the vicinity of the airport.

4. **Industrial and Other Stationary Noise Sources**
Future operations at industrial facilities are dependant on many variables and information was unavailable to allow meaningful projections of noise. It is recommended that detailed studies of current source operations be conducted whenever potentially noise sensitive land uses are proposed for areas near existing industrial, commercial, or other stationary facilities which could generate significant noise levels.
References

The references listed here are in addition to those documented throughout the report.

E. List of Preparers

Illingworth & Rodkin, Inc., an acoustics and air quality consulting firm, was contracted by Stanislaus County to conduct this noise study. The following individuals had substantial roles in conducting the noise study and in the preparation of this report:

- Richard Rodkin (Principal) developed study approach, provided oversight in field measurement locations, traffic noise modeling and report preparation tasks, and reviewed this document.

- Dana Lodico (Staff Consultant) directed field measurements, analyzed noise and traffic data, conducted traffic noise modeling, and was the author of the report.

- Clayton Anderson (Staff Consultant) conducted noise measurements.
Appendix A: Existing Noise Sources
Figure A-1: Noise Measurement Locations

Noise Measurement Locations
Stanislaus County (2004)
Table A-1: Summary of Long-Term Noise Measurements

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Date</th>
<th>Time</th>
<th>Daytime Noise Levels</th>
<th>Nighttime Noise Levels</th>
<th>L_{dn}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long-Term Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT-1</td>
<td>Residential Land Use, 907 Kiernan Road</td>
<td>7/20/04 to 7/21/04</td>
<td>11:00 am to 1:00 pm</td>
<td>65-68</td>
<td>56-65</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>~ 60 ft from the centerline of Hwy 219 at Kiernan Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT-2</td>
<td>~50 feet from the centerline of Hwy 108, near intersection with Hwy 219</td>
<td>7/20/04 to 7/21/04</td>
<td>11:30 am to 12:30 pm</td>
<td>71-74</td>
<td>64-73</td>
<td>76</td>
</tr>
<tr>
<td>LT-3</td>
<td>~200 feet to center of SR 99 near lane, ~350 feet to UPRR Rail line</td>
<td>7/20/04 to 7/22/04</td>
<td>12:20 pm to 2:30 pm</td>
<td>72-75</td>
<td>69-75</td>
<td>78</td>
</tr>
<tr>
<td>LT-4</td>
<td>~30 feet from centerline of 132, near county line</td>
<td>7/20/04 to 7/21/04</td>
<td>12:00 pm to 4:00 pm</td>
<td>62-66</td>
<td>51-66</td>
<td>68</td>
</tr>
<tr>
<td>LT-5</td>
<td>~50 feet from centerline of 120, near County line</td>
<td>7/20/04 to 7/21/04</td>
<td>2:00 pm to 5:00 pm</td>
<td>70-73</td>
<td>62-72</td>
<td>75</td>
</tr>
<tr>
<td>LT-6</td>
<td>~45 feet from centerline of Hwy. 4</td>
<td>7/20/04 to 7/21/04</td>
<td>6:00 pm to 7:00 pm</td>
<td>66-75</td>
<td>54-77</td>
<td>69</td>
</tr>
<tr>
<td>LT-7</td>
<td>~50 feet from centerline of Central Ave, south of Ceres near Grayson Road</td>
<td>7/20/04 to 7/22/04</td>
<td>2:00 pm to 3:00 pm</td>
<td>67-76</td>
<td>59-69</td>
<td>72</td>
</tr>
<tr>
<td>LT-8</td>
<td>~65 feet from near lane of I-5</td>
<td>7/20/04 to 7/21/04</td>
<td>11:00 am to 12:00 pm</td>
<td>73-75</td>
<td>73-75</td>
<td>80</td>
</tr>
<tr>
<td>LT-9</td>
<td>~50 feet from centerline of SR 33, north of Crow's Landing</td>
<td>7/21/04 to 7/22/04</td>
<td>11:30 am to 1:00 pm</td>
<td>66-70</td>
<td>57-69</td>
<td>72</td>
</tr>
<tr>
<td>LT-10a</td>
<td>~50 feet from the centerline of Santa Fe Ave., near Leedom</td>
<td>7/21/04 to 7/22/04</td>
<td>3:30 pm to 4:00 pm</td>
<td>68-75</td>
<td>62-76</td>
<td>78</td>
</tr>
<tr>
<td>LT-10b</td>
<td>~50 feet from the centerline of Santa Fe Ave., near Leedom</td>
<td>8/31/04 to 9/2/04</td>
<td>2:00 pm to 3:00 pm</td>
<td>68-75</td>
<td>60-74</td>
<td>76</td>
</tr>
<tr>
<td>LT-11</td>
<td>3831 Hatch Road, ~65 feet from centerline of Hatch Road</td>
<td>7/21/04 to 7/22/04</td>
<td>3:30 pm to 4:00 pm</td>
<td>68-71</td>
<td>62-71</td>
<td>74</td>
</tr>
<tr>
<td>LT-12</td>
<td>~20 feet west of SPTCo Railroad and ~105 feet west of SR 99, in Ceres</td>
<td>5/18/04 to 5/21/04</td>
<td>12:30 pm to 2:00 pm</td>
<td>77-81</td>
<td>71-79</td>
<td>83</td>
</tr>
<tr>
<td>LT-13</td>
<td>~50 feet from the edge of Service Road, at Service and Moffet in Ceres</td>
<td>5/18/04 to 5/21/04</td>
<td>1:00 pm to 2:00 pm</td>
<td>69-73</td>
<td>62-73</td>
<td>75</td>
</tr>
<tr>
<td>LT-14</td>
<td>2805 Evalee Lane, ~270 feet east of SR 99, in Ceres</td>
<td>5/18/04 to 5/20/04</td>
<td>1:30 pm to 3:00 pm</td>
<td>66-69</td>
<td>60-69</td>
<td>72</td>
</tr>
<tr>
<td>LT-15</td>
<td>Little Orchard Mobile Home Park, ~130 feet east of SR 99, in Ceres</td>
<td>5/18/04 to 5/20/04</td>
<td>2:30 pm to 3:00 pm</td>
<td>72-74</td>
<td>64-73</td>
<td>78</td>
</tr>
<tr>
<td>LT-16</td>
<td>~60 feet from near lane of I-5 in Wesley</td>
<td>8/31/04 to 9/2/04</td>
<td>10:30 am to 10:30 am</td>
<td>72-74</td>
<td>71-75</td>
<td>80</td>
</tr>
<tr>
<td>LT-17</td>
<td>~150 feet from AT&SF Railroad in Hughson</td>
<td>8/31/04 to 9/2/04</td>
<td>1:00 pm to 2:00 pm</td>
<td>69-80</td>
<td>59-80</td>
<td>81</td>
</tr>
<tr>
<td>LT-18</td>
<td>~50 feet from the Sierra Railroad tracks east of Oakdale</td>
<td>8/31/04 to 9/2/04</td>
<td>3:00 pm to 3:00 pm</td>
<td>66-71</td>
<td>58-70</td>
<td>72</td>
</tr>
<tr>
<td>LT-19</td>
<td>~35 feet from the Tidewater Railroad, south of Del Rio</td>
<td>8/31/04 to 9/2/04</td>
<td>4:00 pm to 4:00 pm</td>
<td>63-70</td>
<td>43-63</td>
<td>70</td>
</tr>
</tbody>
</table>
Table A-2: Summary of Short-Term Noise Measurements

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Date</th>
<th>Time</th>
<th>L_{eq}</th>
<th>L_{1}</th>
<th>L_{10}</th>
<th>L_{50}</th>
<th>L_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>~75 feet from the centerline of Maze Blvd/ Hwy. 122 at Garrison</td>
<td>7/20/04</td>
<td>12:55 pm to 1:00 pm</td>
<td>71</td>
<td>81</td>
<td>76</td>
<td>66</td>
<td>50</td>
</tr>
<tr>
<td>ST-2</td>
<td>~75 feet from the centerline of Grayson Road, east of Jennings Road</td>
<td>7/20/04</td>
<td>1:48 pm to 1:58 pm</td>
<td>61</td>
<td>75</td>
<td>63</td>
<td>45</td>
<td>37</td>
</tr>
<tr>
<td>ST-3</td>
<td>~80 feet from the centerline of Carpenter Road, at Monte Vista Avenue</td>
<td>7/20/04</td>
<td>2:22 pm to 2:32 pm</td>
<td>64</td>
<td>74</td>
<td>68</td>
<td>54</td>
<td>44</td>
</tr>
<tr>
<td>ST-4</td>
<td>~60 feet from the centerline of West Main Street, west of Blaker Road</td>
<td>7/20/04</td>
<td>3:00 pm to 3:10 pm</td>
<td>68</td>
<td>77</td>
<td>72</td>
<td>62</td>
<td>49</td>
</tr>
<tr>
<td>ST-5</td>
<td>~60 feet from the centerline of Crows Landing Road, at Zeering</td>
<td>7/20/04</td>
<td>3:33 pm to 3:43 pm</td>
<td>67</td>
<td>78</td>
<td>70</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>ST-6</td>
<td>~40 feet from the centerline of SR 33, south of Westley</td>
<td>7/21/04</td>
<td>10:50 am to 11:00 am</td>
<td>71</td>
<td>81</td>
<td>75</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td>ST-7</td>
<td>~50 feet from the centerline of Albers, between Patterson and Claribel</td>
<td>7/21/04</td>
<td>5:50 pm to 6:00 pm</td>
<td>72</td>
<td>82</td>
<td>76</td>
<td>67</td>
<td>54</td>
</tr>
<tr>
<td>ST-8</td>
<td>~50 feet from the centerline of Claribel, between Albers and Hwy. 108</td>
<td>7/21/04</td>
<td>6:15 pm to 6:25 pm</td>
<td>69</td>
<td>78</td>
<td>74</td>
<td>62</td>
<td>50</td>
</tr>
<tr>
<td>ST-9</td>
<td>~60 feet from the centerline of Hwy. 108, at Orchard Ave.</td>
<td>7/21/04</td>
<td>6:40 pm to 6:50 pm</td>
<td>70</td>
<td>77</td>
<td>74</td>
<td>69</td>
<td>56</td>
</tr>
<tr>
<td>ST-10</td>
<td>~60 feet from the centerline of Valley Home Rd, at 12342 Valley Home Road</td>
<td>7/21/04</td>
<td>7:10 pm to 7:20 pm</td>
<td>65</td>
<td>76</td>
<td>71</td>
<td>52</td>
<td>42</td>
</tr>
</tbody>
</table>
Figure A-2: Daily Trend in Noise Levels at LT-1

Noise Levels at LT-1
60 Feet from the Centerline of SR-219
July 20th - 21st, 2004

Figure A-3: Daily Trend in Noise Levels at LT-2

Noise Levels at LT-2
50 Feet from the Centerline of SR-108
July 20th - 21st, 2004
Figure A-4: Daily Trend in Noise Levels at LT-3

Noise Levels at LT-3
200 Feet from the Centerline of SR-99
July 20th - 21th, 2004

Figure A-5: Daily Trend in Noise Levels at LT-4

Noise Levels at LT-4
30 Feet from the Centerline of SR-132
July 20th - 21th, 2004
Figure A-6: Daily Trend in Noise Levels at LT-5
Noise Levels at LT-5
50 Feet from Centerline of SR-120
July 20th - 21th, 2004

Figure A-7: Daily Trend in Noise Levels at LT-6
Noise Levels at LT-6
45 Feet from the Centerline of SR-4
July 20th - 21th, 2004
Figure A-8: Daily Trend in Noise Levels at LT-7

Noise Levels at LT-7
30 Feet from the Centerline of Central Avenue
July 20th - 21st, 2004

Figure A-9: Daily Trend in Noise Levels at LT-8

Noise Levels at LT-8
100 Feet from the Centerline of I-5
July 21th - 22th, 2004
Figure A-10: Daily Trend in Noise Levels at LT-9

Noise Levels at LT-9
50 Feet from the Centerline of SR-33
July 21th - 22th, 2004

Figure A-11: Daily Trend in Noise Levels at LT-10a

Noise Levels at LT-10
Santa Fe Avenue at Leedom
July 21th - 22th, 2004
Figure A-12: Daily Trend in Noise Levels at LT-10b

Noise Levels at Location LT-10
Santa Fe Avenue at Leedom
August 31st to September 2nd, 2004

Figure A-13: Daily Trend in Noise Levels at LT-11

Noise Levels at LT-11
45 Feet from the Centerline of Hatch Road
July 21st - 22nd, 2004
Figure A-14: Daily Trend in Noise Levels at LT-12

Noise Levels at Location LT-12
105 Feet west of SR 99, 20 Feet to Railroad Tracks
May 18-19, 2004

Figure A-15: Daily Trend in Noise Levels at LT-13

Noise Levels at Location LT-13
Service Rd & Moffet Rd
May 18-19, 2004
Figure A-16: Daily Trend in Noise Levels at LT-14

Noise Levels at Location LT-14
3805 Evalle Lane, Ceres CA
May 18-19, 2004

Figure A-17: Daily Trend in Noise Levels at LT-15

Noise Levels at Location LT-15
3632 6th Street, Little Orchard Mobile Home Park
Ceres, CA, May 18-19, 2004
Figure A-18: Daily Trend in Noise Levels at LT-16

Noise Levels at LT-16
100 Feet from the Centerline of I-5
August 31th - September 2nd, 2004

Figure A-19: Daily Trend in Noise Levels at LT-17

Noise Levels at Location LT-17
~25 Feet from edge of Santa Fe Avenue in Hughson
150 Feet from Railroad
August 31st to September 2nd, 2004
Figure A-20: Daily Trend in Noise Levels at LT-18

Noise Levels at Location LT-18
Along Sierra Road, East of Oakdale
50 Feet from Sierra Railroad tracks
August 31st to September 2nd, 2004

Figure A-21: Daily Trend in Noise Levels at LT-19

Noise Levels at LT-19
Along St. Johns Road, 25 Feet from Tidemark Railroad Tracks
August 31st - September 2nd, 2004
Table A-3: Noise Contour Distances for Major Railroad Lines in Stanislaus County

<table>
<thead>
<tr>
<th>Railroad Description*</th>
<th>Distance from Centerline of the Railroad Tracks (in feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75-Ldn</td>
</tr>
<tr>
<td>Union Pacific Railroad (UPRR)</td>
<td>70</td>
</tr>
<tr>
<td>Burlington Northern and Santa Fe (BN & SF) Railway</td>
<td>100</td>
</tr>
<tr>
<td>Sierra Railroad</td>
<td>**</td>
</tr>
<tr>
<td>Tidewater Southern Railroad</td>
<td>**</td>
</tr>
</tbody>
</table>

* Noise contour distances for the Modesto and Empire Traction Company Railroad were not calculated due to a lack of specific information regarding train movements along this track.

** Distances of less than 50 feet are not included in this table.
Appendix B: Future Noise Environment
<table>
<thead>
<tr>
<th>Community</th>
<th>Roadway Description</th>
<th>Distance from Centerline of Roadway (in feet) Based on Traffic Noise Modeling*</th>
<th>Maximum L<sub>eq</sub>(h) at 75 feet from Centerline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Existing 70-Ldn 65-Ldn 60-Ldn</td>
<td>2030 Circulation Element 70-Ldn 65-Ldn 60-Ldn</td>
</tr>
<tr>
<td>Salida</td>
<td>SR 99</td>
<td>440 950 2040</td>
<td>640 1370 2950</td>
</tr>
<tr>
<td>Salida</td>
<td>SR 219</td>
<td>90 190 410</td>
<td>200 430 930</td>
</tr>
<tr>
<td>Salida</td>
<td>Finney Road</td>
<td>* 100 230</td>
<td>* 50</td>
</tr>
<tr>
<td>Salida</td>
<td>Broadway</td>
<td>* 100 210</td>
<td>90 200 430</td>
</tr>
<tr>
<td>Salida</td>
<td>Salida Boulevard</td>
<td>* 70 160</td>
<td>60 120 270</td>
</tr>
<tr>
<td>Salida</td>
<td>Siak Road</td>
<td>* * 60</td>
<td>* * 90</td>
</tr>
<tr>
<td>Del Rio</td>
<td>Me Henry (North of 108)</td>
<td>80 160 350</td>
<td>120 260 550</td>
</tr>
<tr>
<td>Del Rio</td>
<td>Ladd Road</td>
<td>80 160 350</td>
<td>* 80 170</td>
</tr>
<tr>
<td>Knights Ferry</td>
<td>SR 108-120</td>
<td>60 120 260</td>
<td>100 220 470</td>
</tr>
<tr>
<td>La Grange</td>
<td>SR 132</td>
<td>100 220 470</td>
<td>160 350 750</td>
</tr>
<tr>
<td>La Grange</td>
<td>La Grange Boulevard</td>
<td>* * *</td>
<td>* * 90</td>
</tr>
<tr>
<td>East of Oakdale</td>
<td>SR 108-120</td>
<td>50 120 250</td>
<td>* 100 220</td>
</tr>
<tr>
<td>Westley</td>
<td>SR 33</td>
<td>60 120 260</td>
<td>90 200 430</td>
</tr>
<tr>
<td>Westley</td>
<td>Grayson / Howard Road</td>
<td>* 60 140</td>
<td>50 110 240</td>
</tr>
<tr>
<td>Grayson</td>
<td>Grayson Road</td>
<td>* 90 190</td>
<td>60 130 280</td>
</tr>
<tr>
<td>Grayson</td>
<td>River Road</td>
<td>* * 100</td>
<td>* 50 110</td>
</tr>
<tr>
<td>Crows Landing</td>
<td>SR 33</td>
<td>* 90 190</td>
<td>90 190 410</td>
</tr>
<tr>
<td>Crows Landing</td>
<td>Fink / Crows Landing Road</td>
<td>* 100 230</td>
<td>90 200 420</td>
</tr>
<tr>
<td>Keyes</td>
<td>SR 99</td>
<td>280 590 1280</td>
<td>380 810 1740</td>
</tr>
<tr>
<td>Keyes</td>
<td>Faith Home Road</td>
<td>* * 60</td>
<td>* 100 220</td>
</tr>
<tr>
<td>Keyes</td>
<td>Keyes Road</td>
<td>* 90 190</td>
<td>120 260 550</td>
</tr>
<tr>
<td>Keyes</td>
<td>Keyes Road</td>
<td>120 260 550</td>
<td>190 410 870</td>
</tr>
<tr>
<td>Empire</td>
<td>SR 132</td>
<td>* 100 210</td>
<td>100 220 470</td>
</tr>
<tr>
<td>Community</td>
<td>Roadway Description</td>
<td>Distance from Centerline of Roadway (in feet) Based on Traffic Noise Modeling*</td>
<td>Maximum $L_{req(75)}$ at 75 feet from Centerline</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing</td>
<td>2030 Circulation Element</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-Ldn</td>
<td>65-Ldn</td>
</tr>
<tr>
<td>Empire</td>
<td>Santa Fe Avenue</td>
<td>90</td>
<td>190</td>
</tr>
<tr>
<td>Empire</td>
<td>Church Street</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Hickman</td>
<td>Hickman Road</td>
<td>120</td>
<td>260</td>
</tr>
<tr>
<td>Hickman</td>
<td>Lake Road</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>Denair</td>
<td>Santa Fe Avenue</td>
<td>*</td>
<td>90</td>
</tr>
<tr>
<td>Denair</td>
<td>Monte Vista Avenue</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Denair</td>
<td>Zeering Road</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>Denair</td>
<td>Graton Road</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Denair</td>
<td>Graton Road</td>
<td>*</td>
<td>60</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 165 (Co. Line to SR 99)</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 219 (Salida to SR 108)</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 33 (Co. Line to Co. Line)</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>I-5 (Co. Line to Co. Line)</td>
<td>190</td>
<td>410</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 108 (SR 219 to SR 120)</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 120 (Co. Line to Co. Line)</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 4 (Co. Line to Co. Line)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 132 (West of Modesto)</td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>Rural State Highways</td>
<td>SR 132 (East of Modesto)</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Claribel Road (Mc Henry to Coffee)</td>
<td>130</td>
<td>280</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Claribel Road (Oakdale to Albers)</td>
<td>150</td>
<td>320</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Hatch Road (Carpender to Modesto)</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Hatch Road (Modesto CL to Mitchell)</td>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Hatch Road (Mitchell to Santa Fe)</td>
<td>90</td>
<td>190</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Grayson Road (I-5 to Crows Landing)</td>
<td>*</td>
<td>90</td>
</tr>
<tr>
<td>Community</td>
<td>Roadway Description</td>
<td>Distance from Centerline of Roadway (in feet) Based on Traffic Noise Modeling*</td>
<td>Maximum $L_{eq}(h)$ at 75 feet from Centerline</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing</td>
<td>2030 Circulation Element</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-Ldn 65-Ldn 60-Ldn</td>
<td>70-Ldn 65-Ldn 60-Ldn</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Keyes Road (Carpender to Hickman)</td>
<td>* 70 160</td>
<td>90 190 420</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>West Main (Turlock to I-5)</td>
<td>100 220 470</td>
<td>180 400 850</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Carpenter Road (West Main to Grayson)</td>
<td>60 120 260</td>
<td>110 230 500</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Carpenter Road (Grayson to Modesto)</td>
<td>50 120 250</td>
<td>110 230 500</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Crows Landing Road (Crows Landing to Modesto)</td>
<td>60 140 300</td>
<td>110 240 520</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Mc Henry Avenue (Ladd Road to Co. Line)</td>
<td>80 160 350</td>
<td>120 260 550</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Claus Road (SR132 to Claribel)</td>
<td>* 100 220</td>
<td>120 260 550</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Claus Road (Claribel to Patterson)</td>
<td>80 180 380</td>
<td>180 400 850</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Coffee Road (Modesto to Patterson)</td>
<td>* 60 140 *</td>
<td>60 120 *</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Oakdale Road (Patterson to Claribel)</td>
<td>60 120 260</td>
<td>90 190 410</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Oakdale Road (Claribel to Modesto)</td>
<td>60 120 260</td>
<td>100 220 470</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Tully Road (Ladd to Bangs)</td>
<td>* 60 130 *</td>
<td>90 190 410</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Mitchell Road (Hatch to Modesto CL)</td>
<td>100 220 460</td>
<td>120 260 560</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Santa Fe Avenue (Empire to Co. Line)</td>
<td>60 140 300</td>
<td>100 210 450</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Geer Road (Turlock to SR 132)</td>
<td>90 190 400</td>
<td>140 290 630</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Albers Road (SR 132 to Oakdale)</td>
<td>120 260 550</td>
<td>230 490 1050</td>
</tr>
<tr>
<td>Rural County Roads</td>
<td>Hickman Road (West Main to Waterford)</td>
<td>* 60 120 *</td>
<td>* 90 200 *</td>
</tr>
</tbody>
</table>

* Distances of less than 50 feet are not included in this table.
Figure B-1: Noise Contour Map for Major Roadway Noise Sources (Unconstrained 2030)

Predicted Future (2030) Noise Levels for Major Roadways in Stanislaus County 75 feet from the Centerline of the Roadway

Legend
- 75 dBA L_eq at ground
- 70 - 74 dBA L_eq
- 65 - 69 dBA L_eq
- 60 - 64 dBA L_eq
- Less than 60 dBA L_eq

Color Map available at www.stanislaus.ca.us/MAPROOM

ILLINGWORTH & RODKIN, INC.
Acoustics • Air Quality